В этом разделе приводится классификация и анализ передач, преобразующих вращательное движение во вращательное же, но с другими параметрами. Их — подавляющее большинство в современной технике. Классификация механизмов, преобразующих вращательное движение в другие виды движений, рассматривается в курсе «Теория машин и механизмов».
Передачи классифицируются по двум главным признакам:
в зависимости от способа передачи вращения на передачи зацеплением (зубчатые, червячные, цепные, зубчатыми ремнями, винтовые) и передачи трением (фрикционные, с гладкими ремнями);
в зависимости от способа соединения ведущего и ведомого звеньев на передачи с непосредственным контактом (зубчатые, червячные, винтовые, фрикционные) и с гибкой дополнительной связью (ременные, цепные).
В связи с многовариантностью выбора передач конструктором и большой важностью именно этого первоначального обоснованного выбора типа передачи ниже приводится краткое описание передач, а также анализ их преимуществ, недостатков, перспектив, предпочтительные области применения каждой передачи. Ведь обоснованный выбор типа передачи для того или иного конкретного назначения — это творческий процесс, которым в первую очередь должен овладеть молодой специалист-конструктор. Дальнейшие расчеты передач, как бы важны они ни были, все-таки вторичны, и успех технического решения главным образом зависит от удачного выбора варианта передачи.
Итак, рассмотрим в упомянутом аспекте следующие наиболее распространенные механические передачи: зубчатые, червячные и другие передачи со скрещивающимися осями, винтовые, цепные, ременные, фрикционные, а также проведем их сравнение по основным показателям.
Передача с зацеплением М. Л. Новикова
В 1954 г. в Россиии Появилось новое удачное зубчатое зацепление, в отличие от множества других, не проявивших себя с положительной стороны, — зацепление М.Л.Новикова Зубья, по М.Л.Новикову, профилируются по дугам окружностей, причем выпуклость на одном зубе сопрягается с вогнутостью на другом. При этом зубья выполняются винтовыми, а следовательно, рабочие поверхности зубьев можно охарактеризовать как круговинтовые. Нагрузочная способность такой передачи в 1,5... 1,7 раза выше, чем у аналогичной по размерам и материалу эвольвентной косозубой передачи. Недостатки — чувствительность к изменению межосевого расстояния, сложность инструмента для нарезания зубьев.
Планетарные и волновые передачи
По сравнению с другими зубчатыми передачами планетарные и волновые передачи появились сравнительно недавно. Планетарную передачу предложил в 1781 г. изобретатель паровой машины Дж. Уатт, причем не совсем по ее прямому назначению, а для того, чтобы заменить кривошипно-шатунный механизм, запатентованный применительно для паровой машины другим изобретатеелем. Однако столетие спустя планетарная передача стала активно использоваться по своему прямому назначению в трансмиссиях машин.
Самой «молодой» из зубчатых передач является волновая передача. Впервые такая передача была запатентована в США инженером Массером в 1959 г. и за довольно краткий срок широко распространилась во многих областях техники.
Рис. 2.9. Схема планетарной передачи:
a — центральное колесо наружного зацепления; b — центральное колесо внутреннего зацепления; g — сателлиты; Н — водило
Планетарными называются передачи, имеющие зубчатые колеса с подвижными осями. Эти передачи (рис. 2.9) состоят из центральных колес наружного a и внутреннего b зацепления (часто используются устаревшие названия, соответственно солнечное колесо и эпицикл). Центральные колеса а и b находятся в зацеплении с сателлитами g, вращающимися вокруг осей, установленных в водиле Н, которое тоже вращается. Сателлиты, вращаясь вокруг собственных осей, вращаются, кроме того, и вокруг центрального колеса а, подобно планетам вокруг Солнца. Отсюда и название передачи.
Ведущим в планетарной передаче может быть как центральное колесо а, так и водило Н при остановленном колесе b. Можно вращать и колесо b при остановленном колесе а. При этом получаются различные передаточные отношения в одной и той же передаче. Для получения хода назад (реверса) останавливают водило Н и вращают центральные колеса — а или b. При этом и на заднем ходу получают различные передаточные отношения.
Если же вращаются и водило, и оба центральных колеса, то получают так называемую дифференциальную передачу, которая, в отличие от большинства механических передач, имеет не одну, а две степени свободы. Такие дифференциальные передачи широко применяются в автомобилях для механической связи ведущих колес как на одной оси (межколесный дифференциал), так и для связи ведущих колес на разных осях (межосевой дифференциал).
Дифференциальные передачи часто применяются совместно с механическими и немеханическими бесступенчатыми передачами, расширяя их функциональные возможности — повышая КПД или увеличивая диапазон передаточных отношений. Роль таких комбинированных передач в технике все возрастает.
Планетарные передачи могут быть одно- или многоступенчатыми и иметь передаточные отношения до 1000 и более.
Так как в планетарных передачах вращающий момент распределяется по нескольким потокам — по числу сателлитов, эти передачи получаются намного компактнее обычных зубчатых передач. Кроме того, все подшипники, кроме сателлитных, здесь разгружены от радиальных усилий. Так как водило вращается в ту же сторону, что и ведущее центральное колесо, КПД, особенно при малых передаточных отношениях, в планетарной передаче может быть чрезвычайно высок.
Все это создает большие преимущества планетарным передачам, да и вообще планетарным схемам механизмов, делая их весьма перспективными во многих отраслях машиностроения. В настоящее время планетарные передачи выполняют на мощности от нескольких ватт (приборы, сервопривод) до мегаватт (например, ветроэлектростанции) при колоссальных вращающих моментах — до5.106 Н.м.
Планетарные передачи, несмотря на их сложность, очень перспективны, если требуются высокая компактность и расширение функций передачи — реверс, наборы передаточных отношений. Планетарные передачи позволяют иметь высокие передаточные отношения, комбинирование с бесступенчатыми передачами, упрощенное включение передачи торможением одного из звеньев. Планетарные схемы очень перспективны для повышения КПД как зубчатых передач, так и других, например фрикционных.
Волновые передачи кинематически представляют собой планетарные передачи с одним сателлитом в виде гибкого венца g (рис. 2.10). Этот гибкий венец упруго деформируется генератором волн Н (в данном случае специальным гибким подшипником l) и входит в зацепление с жестким центральным колесом b, в данном случае в двух зонах. Как видно, в зацепление входят много зубьев, до 50 % всех зубьев колеса, с чем связана высокая несущая способность волновой передачи. Ведь у обычных зубчатых передач в зацепление входят лишь 1...2 % зубьев.
Рис. 2.10. Схема волновой передачи:
b — центральное колесо; g — венец; l — подшипник; H — генератор волн; nH — частота вращения ведущего звена; ng — частота вращения ведомого звена
По сравнению с обычными зубчатыми передачами волновые имеют меньшие габариты и массу, даже меньшие, чем у планетарных передач на тот же момент. Они обеспечивают высокую кинематическую точность, обладают демпфирующей способностью. Специфическим свойством волновых передач является возможность передачи вращения в герметизированное пространство практически при нулевых протечках среды.
Волновые передачи способны осуществлять высокие передаточные отношения в одной ступени: например для стальных гибких колес, от минимального примерно 60 до максимального 300. При этом КПД их достаточно велик — в режиме редуктора 80...90 %, как и в планетарных передачах с тем же передаточным отношением. При работе в качестве мультипликатора КПД сильно падает.
Недостатком волновых передач является малая частота вращения генератора волн, примерно в пределах 1500...3500 мин-1 при радиусах малых гибких колес от 125 до 25 мм соответственно. Поэтому мощность волновых передач, несмотря на высокие передаваемые моменты, не может быть высокой — от 0,1 до 48 кВт. Срок службы их тоже не очень высок — до 104 часов; это всего около полутора лет при круглосуточной работе и втрое больше при 8-часовой смене.
При серийном изготовлении в специализированном производстве волновые передачи дешевле планетарных; серийно волновые редукторы общего назначения выпускаются пока только в США и Японии.
Волновые передачи следует использовать в сервоприводах и других случаях, не требующих высоких мощностей и частот вращения. В частности, если требуется высокая компактность передачи, точность и плавность работы, а также возможность передачи вращения в герметизированное пространство. Волновые передачи, если позволяет компоновка, следует смелее использовать вместо червячных передач (см. ниже) средней мощности в сервоприводах, лебедках, мотор-редукторах с высокими передаточными отношениями и других случаях, так как первые намного компактнее и имеют несравнимо высокий КПД.
Винтовые передачи
Винтовая передача еще называемая иногда передача винт — гайка, еще более древняя, чем червячная. Винтовой пресс для выдавливания сока из винограда существовал с незапамятных времен. Гайка здесь была монолитной и связанной со станиной пресса. Но мысль сделать винт неподвижным, а гайку или часть ее привести в движение вращением винта принадлежала Архимеду.
Современные винтовые передачи могут содержать как неподвижную гайку и подвижный винт, например в винтовом домкрате (рис. 1), так и неподвижный винт и подвижную гайку, например ходовые винты станков
Винтовые передачи могут быть: скольжения, качения (когда гайка содержит канавки с помещенными туда шариками), планетарными роликовыми (перспективные передачи, обладающие большой точностью и жесткостью), волновые (для очень малых поступательных перемещений) и гидростатические (с малыми трением, износом и повышенной точностью).
У винтовых передач специфическое назначение — преобразование вращательного движения в осевое по оси винта и наоборот. Иногда пишут, что винтовые передачи преобразуют вращательное движение в поступательное, но это неточно, так как поступательное движение тела — это такое движение, когда линия, проведенная в теле, при перемещении остается параллельной самой себе (например, поступательное движение совершают педали велосипеда). При преобразовании вращательного движения в осевое получается большой выигрыш в силе и медленное осевое перемещение, при преобразовании осевого движения во вращательное — получение быстрого вращения от медленного осевого перемещения. Первый случай является предпочтительным, и за редкими исключениями (игрушки типа юлы, особые дрели и пр.) винтовые передачи применяются именно по этому назначению.
Рис. 1, Винтовой домкрат: 1 — рукоять; 2 — подвижный винт; 3 — неподвижная гайка; 4 — станина | Рис.2 Винтовая передача с подвижной гайкой (стрелками показано направление движения): 1 — направляющая; 2 — неподвижный винт; 3 — подвижная гайка |
Характерные области применения винтовых передач: поднятие грузов (в домкратах); осуществление процесса механической обработки (в станках); управление машинами (например, усилитель руля); точные делительные перемещения (в измерительном деле); перемещения в следящих системах и сервоприводах.
Ввиду специфичности назначения винтовой передачи конкурировать с ней могут разве только реечные передачи, а также разнообразные кривошипно-ползунные, кулисные и другие механизмы, преобразующие вращательное движение в прямолинейное. Однако малые перемещения и большие силы — вот реальное назначение винтовых передач.
Список использованной литературы