Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Понятие комплексного числа




Реферат

Комплексные числа

Выполнил: Зейнелхан Илияс

Группа: ИСР-31

ИСТОРИЧЕСКАЯ СПРАВКА

Комплексные числа были введены в математику для того, чтобы сделать возможной операцию извлечения квадратного корня из любого действительного числа. Это, однако, не является достаточным основанием для того, чтобы вводить в математику новые числа. Оказалось, что если производить вычисления по обычным правилам над выражениями, в которых встречаются квадратный корень из отрицательного числа, то можно прийти к результату, уже не содержащему квадратный корень из отрицательного числа. В XVI в. Кар дано нашел формулу для решения кубического уравнения. Оказалось, когда кубическое уравнение имеет три действительных корня, в формуле Кар дано встречается квадратный корень из отрицательного числа. Поэтому квадратные корни из отрицательных чисел стали употреблять в математике и назвали их мнимыми числами – тем самым они как бы приобрели право на нелегальное существование. Полные гражданские права мнимым числам дал Гаусс, который назвал их комплексными числами, дал геометрическую интерпретацию и доказал основную теорему алгебры, утверждающую, что каждый многочлен имеет хотя бы один действительный корень.

 

ПОНЯТИЕ КОМПЛЕКСНОГО ЧИСЛА

Решение многих задач математики, физики сводится к решению алгебраических уравнений. Поэтому исследование алгебраических уравнений является одним из важнейших вопросов в математике. Стремление сделать уравнения разрешимыми – одна из главных причин расширения понятия числа.

Так для решимости уравнений вида X+A=B положительных чисел недостаточно. Например, уравнение X+5=2 не имеет положительных корней.Поэтому приходится вводить отрицательные числа и нуль.

На множестве рациональных чиселразрешимы алгебраические уравнения первой степени, т.е. уравнения вида A·X+B=0 (A/>0). Однако алгебраические уравнениястепени выше первой могут не иметь рациональных корней. Например, такимиявляются уравнения X2=2, X3=5. Необходимостьрешения таких уравнений явилось одной из причин введения иррациональных чисел.Рациональные и иррациональные числа образуют множество действительных чисел.

Однако и действительных чиселнедостаточно для того, чтобы решить любое алгебраическое уравнение. Например,квадратное уравнение с действительными коэффициентами и отрицательнымдискриминантом не имеет действительных корней. Простейшее из них – уравнение X2+1=0. Поэтомуприходится расширять множество действительных чисел, добавляя к нему новыечисла. Эти новые числа вместе с действительными числами образуют множество,которое называют множеством комплексных чисел.

Выясним предварительно, какой виддолжны иметь комплексные числа. Будем считать, что на множестве комплексныхчисел уравнение X2+1=0 имеет корень. Обозначим этот кореньбуквой i Таким образом, i – это комплексное число, такое, что i 2= –1.

Как и для действительных чисел, нужноввести операции сложения и умножения комплексных чисел так, чтобы сумма ипроизведение их были бы комплексными числами. Тогда, в частности, для любых действительных чисел A и B выражение A+B· i можно считать записью комплексногочисла в общем виде. Название «комплексное» происходит от слова «составное»: по виду выражения A+B· i.

Комплексными числами называют выражения вида A+B· i, где A и B –действительныечисла, а i –некоторый символ, такой что i 2= –1, и обозначают буквой Z.

Число A называется действительной частью комплексного числа A+B· i, а число B – его мнимой частью. Число i называется мнимой единицей.

Например, действительная частькомплексного числа 2+3· i равна 2, а мнимая равна 3.

Для строгого определения комплексногочисла нужно ввести для этих чисел понятие равенства.

Два комплексных числа A+B· i и C+D· i называются равными тогда итолько тогда, когда A=C и B=D, т.е. когда равны их действительныеи мнимые части.





Поделиться с друзьями:


Дата добавления: 2016-12-17; Мы поможем в написании ваших работ!; просмотров: 402 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Жизнь - это то, что с тобой происходит, пока ты строишь планы. © Джон Леннон
==> читать все изречения...

2294 - | 2065 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.