Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Проникновение вирусов в клетку

Глава 6. РЕПРОДУКЦИЯ ВИРУСОВ

Процесс репродукции вирусов может быть условно разделен на две фазы. Первая фаза охватывает события, которые ведут к адсорбции и проникновению вируса в клетку, освобождению его внутреннего компонента и мо­дификации его таким образом, что он способен вызвать инфекцию. Соответственно, первая фаза включает в себя три стадии: 1) адсорбция вируса на клетках; 2) проникно­вение в клетки; 3) раздевание вируса в клетке. Эти стадии направлены на то, чтобы вирус был доставлен в соответствующие клеточные структуры, и его внутренний компонент был освобожден от защитных оболочек. Как только эта цель достигнута, начинается вторая фаза репродукции, в течение которой происходит экспрессия вирусного генома. Эта фаза включает в себя стадии: 1) транскрипции, 2) трансляции информационных РНК, 3) репликации генома, 4) сборки вирусных компонентов. Заключительной стадией репродукции является выход вируса из клетки.

АДСОРБЦИЯ

Взаимодействие вируса с клеткой начинается с про­цесса адсорбции, т. е. прикрепления вирусных частиц к клеточной поверхности. Процесс адсорбции возможен при наличии соответствующих рецепторов на поверхности клетки и «узнающих» их субстанций на поверхности вируса. Самые начальные процессы адсорбции имеют неспецифический характер, и в основе их может лежать электростатическое взаимодействие положительно и отри­цательно заряженных группировок на поверхности вируса и клетки. Однако узнавание клеточных рецепторов вирус­ными белками, ведущее к прикреплению вирусной частицы к клетке, является высоко специфическим процессом. Белки на поверхности вируса, узнающие специфические группировки на плазматической мембране клетки и обус­ловливающие прикрепление к ним вирусной частицы, называются прикрепительными белками.

Вирусы используют рецепторы, предназначенные для прохождения в клетку необходимых для ее жизнедеятельности веществ: питательных веществ, гормонов, факторов роста и т. д. Рецепторы могут иметь разную химическую природу и представлять собой белки, углеводный компо­нент белков и липидов, липиды. Рецепторами для вирусов гриппа и парамиксовирусов является сиаловая кислота в составе гликопротеидов и гликолипидов (ганглиозидов), для рабдовирусов и реовирусов — также углеводный компонент в составе белков и липидов, для пикорна- и аденовирусов — белки, для некоторых вирусов — липи­ды. Специфические рецепторы играют роль не только в прикреплении вирусной частицы к клеточной поверх­ности. Они определяют дальнейшую судьбу вирусной частицы, ее внутриклеточный транспорт и доставку в определенные участки цитоплазмы и ядра, где вирус способен инициировать инфекционный процесс. Вирус может прикрепиться и к неспецифическим рецепторам и даже проникнуть в клетку, однако только прикрепление к специфическому рецептору приведет к возникновению инфекции.

Прикрепление вирусной частицы к клеточной поверх­ности вначале происходит путем образования единичной связи вирусной частицы с рецептором. Однако такое прикрепление непрочно, и вирусная частица может легко оторваться от клеточной поверхности (обратимая адсорб­ция). Для того чтобы наступила необратимая адсорбция, должны появиться множественные связи между вирусной частицей и многими молекулами рецепторов, т. е. должно произойти стабильное мультивалентное прикрепление. Количество молекул клеточных рецепторов в участках адсорбции может доходить до 3000. Стабильное связыва­ние вирусной частицы с клеточной поверхностью в ре­зультате мультивалентного прикрепления происходит благодаря возможности свободного перемещения молекул рецепторов в липидном бислое плазматической мембраны, которое определяется подвижностью, «текучестью» белко­во-липидного слоя. Увеличение текучести липидов являет­ся одним из наиболее ранних событий при взаимодействии вируса с клеткой, следствием которого является форми­рование рецепторных полей в месте контакта вируса с клеточной поверхностью и стабильное прикрепление вирусной частицы к возникшим группировкам — необра­тимая адсорбция (рис. 13).

Количество специфических рецепторов на поверхности клетки колеблется между 104 и 105 на одну клетку. Ре­цепторы ряда вирусов могут быть представлены лишь в ограниченном наборе клеток-хозяев, и этим может определяться чувствительность организма к данному вирусу. Например, пикорнавирусы адсорбируются только на клетках приматов. Рецепторы для других вирусов, напротив, широко представлены на поверхности клеток различных видов, как, например, рецепторы для ортомиксо- вирусов и парамиксовирусов, представляющие собой сиалилсодержащие соединения. Поэтому эти вирусы имеют относительно широкий диапазон клеток, на кото­рых может происходить адсорбция вирусных частиц. Рецепторами для ряда тогавирусов обладают клетки исключительно широкого круга хозяев: эти вирусы могут адсорбироваться и инфицировать клетки как позвоночных, так и беспозвоночных.

Наличие специфических рецепторов на поверхности клетки в ряде случаев обусловливает феномен зависимого от хозяина ограничения, т. е. способность вируса заражать лишь определенные виды животных. В целом огра­ничения при взаимодействии рецепторных систем вируса и клетки биологически оправданы и целесообразны, хотя в ряде случаев они являются «перестраховкой». Так, многие линии клеток, устойчивых к вирусам полиомиелита и Кокса ки, можно заразить депротеинизирова иными препаратами РНК, выделенными из этих вирусов. Такое заражение клеток идет в обход естественных входных путей инфекции через взаимодействие с клеточными ре­цепторами. Известна потенциальная способность вирусов животных реплицироваться в протопластах дрожжей, грибов и бактерий, а бактериофагов — в клетках живот­ных. Таким образом, вирусные ДНК и РНК обладают способностью заражать и более широкий круг хозяев, чем вирусы.

Вирусные прикрепительные белки. Прикрепительные белки могут находиться в составе уникальных органелл, таких как структуры отростка у Т-бактериофагов или фибры у аденовирусов, которые хорошо видны в электрон­ном микроскопе; могут формировать морфологически менее выраженные, но не менее уникальные аранжировки белковых субъединиц на поверхности вирусных мембран, как, например, шипы у оболочечных вирусов, «корону» у коронавирусов.

Просто организованные вирусы животных содержат прикрепительные белки в составе капсида. У сложно организованных вирусов эти белки входят в состав супер- капсида и представлены множественными молекулами. Например, у вируса леса Семлики (альфа-вирус) имеется 240 молекул гликопротеида в одном вирионе, у вируса гриппа - 300-450 гемагглютинирующих субъединиц, у реовируса - 24 молекулы белка о-1, у аденовируса - 12 фибров.

 

ПРОНИКНОВЕНИЕ ВИРУСОВ В КЛЕТКУ

Исторически сложилось представление о двух альтер­нативных механизмах проникновения в клетку вирусов животных — путем виропексиса (эндоцитоза) и путем слияния вирусной и клеточной мембран. Однако оба эти механизма не исключают, а дополняют друг друга.

Термин «виропексис», предложенный в 1948 г. Фазекасом де сан Гро, означает, что вирусная частица попадает в цитоплазму в результате инвагинации участка плазматической мембраны и образования вакуоли, которая содержит вирусную частицу.

Рецепторный эндоцитоз. Виропексис представляет собой частный случай рецепторного или адсорбционного эндоцитоза. Этот процесс является обычным механизмом, благодаря которому в клетку поступают питательные и регуляторные белки, гормоны, липопротеины и другие вещества из внеклеточной жидкости. Рецепторный эндоцитоз происходит в специализированных участках плаз­матической мембраны, где имеются специальные ямки, покрытые со стороны цитоплазмы особым белком с боль­шой молекулярной массой — клатрином. На дне ямки располагаются специфические рецепторы. Ямки обеспе­чивают быструю инвагинацию и образование покрытых клатрином внутриклеточных вакуолей. Полупериод про­никновения вещества внутрь клетки по этому механизму не превышает 10 мин с момента адсорбции. Количество образующихся в одну минуту вакуолей достигает более 2000. Таким образом, рецепторный эндоцитоз представляет собой хорошо слаженный механизм, который обеспечивает быстрое проникновение в клетку чужеродных ве­ществ.

Покрытые вакуоли сливаются с другими, более круп­ными цитоплазматическими вакуолями, образуя рецептосомы, содержащие рецепторы, но не содержащие клатрин, а те в свою очередь сливаются с лизосомами. Таким путем проникшие в клетку белки обычно транспортируют­ся в лизосомы, где происходит их распад на аминокисло­ты; они могут и миновать лизосомы, и накапливаться в других участках клетки в недеградированной форме. Альтернативой рецепторного эндоцитоза является жид­костный эндоцитоз, когда инвагинация происходит не в специализированных участках мембраны.

Большинство оболочечных и безоболочечных вирусов животных проникает в клетку по механизму рецепторного эндоцитоза. Эндоцитоз обеспечивает внутриклеточный транспорт вирусной частицы в составе эндоцитарной вакуоли, поскольку вакуоль может двигаться в любом направлении и сливаться с клеточными мембранами (включая ядерную мембрану), освобождая вирусную частицу в соответствующих внутриклеточных участках. Таким путем, например, ядерные вирусы попадают в ядро, а реовирусы — в лизосомы. Однако проникшие в клетку вирусные частицы находятся в составе вакуоли и отделены от цитоплазмы ее стенками. Им предстоит пройти ряд - этапов, прежде чем они смогут вызвать инфекционный процесс.

Слияние вирусной и клеточной мембран. Для того чтобы внутренний компонент вируса мог пройти через клеточную мембрану, вирус использует механизм слияния мембран. У оболочечных вирусов слияние обусловлено точечным взаимодействием вирусного белка слияния с липидами клеточной мембраны, в результате которого вирусная липопротеидная оболочка интегрирует с клеточ­ной мембраной, а внутренний компонент вируса оказы­вается по другую ее сторону. У безоболочечных вирусов один из поверхностных белков также взаимодействует с липидами клеточных мембран, в результате чего внутренний компонент проходит через мембрану. Большинство вирусов животных выходит в цитозолиз рецептосомы.

Если при эндоцитозе вирусная частица является пассивным пассажиром, то при слиянии она становится активным участником процесса. Белком слияния является один из ее поверхностных белков. К настоящему времени этот белок идентифицирован лишь у парамиксовирусов и ортомиксовирусов. У парамиксовирусов этот белок (F-белок) представляет собой один из двух гликопротеи­дов, находящихся на поверхности вирусной частицы.

Функцию белка слияния у вируса гриппа выполняет малая гемагглютинирующая субъединица, НА2.

Парамиксовирусы вызывают слияние мембран при нейтральном pH, и внутренний компонент этих вирусов может проникать в клетку непосредственно через плазма­тическую мембрану. Однако большинство оболочечных и безоболочечных вирусов вызывают слияние мембран только при низком значении pH — от 5,0 до 5,75. Если к клеткам добавить слабые основания (хлорид аммония, хлороквин и др.), которые в эндоцитарных вакуолях повышают pH до 6,0, слияния мембран не происходит вирусные частицы остаются в вакуолях, и инфекционный процесс не возникает. Строгая зависимость слияния мембран от значений pH обусловлена конформационными изменениями вирусных белков слияния.

В лизосоме постоянно имеется низкое значение pH (4,9). В эндоцитарной вакуоли (рецептосоме) закисление создается за счет АТФ-зависимого «протонового насоса» еще на клеточной поверхности при образовании покрытой вакуоли. Закисление эндоцитарной вакуоли имеет большое значение для проникающих в клетку физиологических лигандов, так как низкое значение pH способствует диссоциации лиганда от рецептора и рециркуляции рецепторов.

Тот же механизм, который лежит в основе слияния вирусных и клеточных мембран, обусловливает индуци­рованный вирусами гемолиз и слияние плазматических мембран прилежащих друг к другу клеток с образованием многоядерных клеток, симпластов и синцитиев. Вирусы вызывают два типа слияния клеток: 1) «слияние снаружи» и 2) «слияние изнутри». «Слияние снаружи» происходит при высокой множественности инфекции и обнаруживает­ся в течение первых часов после заражения. Этот тип слияния, описанный для парамиксовирусов, обусловлен белками заражающего вируса и не требует внутриклеточ­ного синтеза вирусных компонентов. Напротив, «слияние изнутри» происходит при низкой множественности инфек­ции, обнаруживается на сравнительно поздних стадиях инфекционного процесса и обусловлено вновь синтезиро­ванными вирусными белками. «Слияние изнут­ри» описано для многих вирусов: вирусов герпеса, онко­вирусов, возбудителей медленных инфекций и др. Этот тип слияния вызывают те же вирусные гликопротеиды, которые обеспечивают проникновение вируса в клетку.

 

 

РАЗДЕВАНИЕ

Проникшие в клетку вирусные частицы должны раздеть­ся для того, чтобы вызвать инфекционный процесс. Смысл раздевания заключается в удалении вирусных защитных оболочек, которые препятствуют экспрессии вирусного генома. В результате раздевания освобождается внутрен­ний компонент вируса, который способен вызвать инфек­ционный процесс. Раздевание сопровождается рядом характерных особенностей: в результате распада вирусной частицы исчезает инфекционная активность, в ряде слу­чаев появляется чувствительность к нуклеазам, возникает устойчивость к нейтрализующему действию антител, теряется фоточувствительность при использовании ряда препаратов.

Конечными продуктами раздевания являются сердце­вины, нуклеокапсиды или нуклеиновые кислоты. Для ряда вирусов было показано, что продуктом раздевания являются не голые нуклеиновые кислоты, а нуклеиновые кислоты, связанные с внутренним вирусным белком. На­пример, конечным продуктом раздевания пикорнавирусов является РНК, ковалентно связанная с белком VPS, конеч­ным продуктом раздевания аденовирусов, вируса полиомы и SV40 является ДНК, ковалентно связанная с одним из внутренних вирусных белков.

В раде случаев способность вирусов вызвать инфек­ционный процесс определяется возможностью их разде­вания в клетке данной системы. Тем самым эта ста­дия является одной из стадий, лимитирующих инфек­цию.

Раздевание ряда вирусов происходит в специализи­рованных участках внутри клетки (лизосомах, структурах аппарата Гольджи, околоядерном пространстве, адерных порах на ядерной мембране). При слиянии вирусной и клеточной мембран проникновение в клетку сочетается с раздеванием.

Раздевание и внутриклеточный транспорт являются взаимосвязанными процессами: при нарушении правиль­ного внутриклеточного транспорта к местам раздевания вирусная частица попадает в лизосому и разрушается лизосомальными ферментами.

Промежуточные формы при раздевании. Раздевание вирусной частицы осуществляется постепенно в результате серии последовательных реакций. Например, в процессе раздевания пикорнавирусы проходят рад стадий с образо­ванием промежуточных субвирусных частиц с размерами от 156 S до 12 S. Раздевание вирусов ECHO имеет сле­дующие стадии: вирионы (156 S) →А-частицы (130 S) - →РНП и пустые капсиды (80 S) → РНК с терминальным белком (12 S). Раздевание аденовирусов происходит в цитоплазме и ядерных порах и имеет по крайней мере 3 стадии: 1) образование субвирусных частиц с большей плотностью, чем вирионы; 2) образование сердцевин, в которых отсутствует 3 вирусных белка; 3) образование ДНК-белкового комплекса, в котором ДНК ковалентно соединена с терминальным белком. Вирус полиомы в про­цессе раздевания теряет наружные белки и превращается в субвирусную частицу с коэффициентом седиментации 48 S. Затем частицы связываются с ядерными белками (гистонами) и формируется 190 S комплекс (с коэффи­циентом седиментации 190 S), способный вызвать инфек­ционный процесс. Вирус гриппа вначале теряет липопротеидную оболочку и превращается в субвирусную частицу, из которой после удаления М-белка освобождается нуклеокапсид.

ТРАНСКРИПЦИЯ

Транскрипция — это переписывание ДНК на РНК по законам генетического кода. Это означает, что РНК сос­тоит из нуклеотидных последовательностей, комплемен­тарных ДНК. Нити ДНК в участке транскрипции разде­ляются и функционируют как матрицы, к которым при­соединяются комплементарные нуклеотиды благодаря спариванию комплементарных оснований (аденин связы­вается с тимином, урацил — с аденином, гуанин — с цито­зином и цитозин — с гуанином). Транскрипция осуществляется с помощью специального фермента — РНК-полимеразы, который связывает нуклеотиды путем образования 3'-5'-фосфодиэфирных мостиков. Такое связывание происходит лишь в присутствии ДНК-матрицы.

Продуктами транскрипции в клетке являются иРНК. Сама клеточная ДНК, являющаяся носителем генети­ческой информации, не может непосредственно програм­мировать синтез белка. Передачу генетической информа­ции от ДНК к рибосомам осуществляет РНК-посредник. На этом основана центральная догма молекулярной биологии, которая выражается следующей формулой:

транскрипция трансляция

ДНК РНК белок, где стрелки показывают направление переноса генети­ческой информации.

Реализация генетической информации у вирусов. Стра­тегия вирусного генома в отношении синтеза иРНК у разных вирусов различна. У ДНК-содержащих вирусов иРНК синтезируется на матрице одной из нитей ДНК. Формула переноса генетической информации у них такая же, как и в клетке.

транскрипция трансляция

ДНК РНК — белок.

ДНК-содержащие вирусы, репродукция которых происхо­дит в ядре, используют для транскрипции клеточную полимеразу. К этим вирусам относятся паповавирусы, аденовирусы, вирусы герпеса. ДНК-содержащие вирусы, репродукция которых происходит в цитоплазме, не могут использовать клеточный фермент, находящийся в ядре. Транскрипция их генома осуществляется вирусспецифическим ферментом — ДНК-полимеразой, которая прони­кает в клетку в составе вируса. К этим вирусам относятся вирусы оспы и иридовирусы.

РНК-содержащие вирусы, у которых хранителем генетической информации является не ДНК, а РНК, решают эту проблему особым образом. У РНК-содержащих «плюс-нитевых» вирусов, у которых функции иРНК выполняет сам геном, передача генетической информации осуществляется по наиболее простой формуле:

РНК белок

К этой группе вирусов относятся пикорнавирусы, тогавирусы, коронавирусы. У них нет необходимости в акте транскрипции для синтеза вирусспецифических белков. Поэтому транскрипцию как самостоятельный процесс у этих вирусов не выделяют. Иначе обстоит дело у вирусов, геном которых не может выполнять функцию иРНК. В клетке синтезируется комплементарная геному РНК, которая и является информационной. Передача генети­ческой информации у этих вирусов осуществляется по формуле: РНК ► РНК ► белок

У этих вирусов транскрипция выделена как самостоя­тельный процесс в инфекционном цикле. К ним относятся две группы вирусов животных.

1. Вирусы, геном которых представлен однонитчатой РНК: ортомиксовирусы, парамиксовирусы, рабдовирусы, буньявирусы. Поскольку геномная РНК этих вирусов является «минус-нитью», указанную группу вирусов назы­вают «минус-нитевыми» вирусами.

2. Вирусы, геном которых представлен двунитчатой РНК (диплорнавирусы). Среди вирусов животных к ним относятся реовирусы.

В клетке нет фермента, который может полимеризовать нуклеотиды на матрице РНК. Эту функцию выпол­няет вирусспецифический фермент — РНК-полимераза, или транскриптаза, которая находится в составе вирусов и вместе с ними проникает в клетку.

Среди РНК-содержащих вирусов животных есть семейство ретровирусов, которые имеют уникальный путь передачи генетической информации. РНК этих вирусов переписывается на ДНК, ДНК интегрирует с клеточным геномом и в его составе переписывается на РНК, которая обладает информационными функциями. Путь передачи генетической информации в этом случае осуществляется по более сложной формуле: РНК ДНК РНК белок

В составе этих вирусов есть уникальный вирусспецифи­ческий фермент, который переписывает РНК на ДНК. Этот процесс называется обратной транскрипцией, а фер­мент — обратная транскриптаза, или ревертаза. Тот же фермент синтезирует нить ДНК на матрице ДНК. Дву­нитчатая ДНК после замыкания в кольцо интегрирует с клеточным геномом, и транскрипцию интегрированной ДНК в составе клеточных геномов осуществляет кле­точная РНК-полимераза. Поскольку иРНК ретровирусов гомологична геномной РНК (а не комплементарна ей), ретровирусы являются «плюс-нитевыми» вирусами.

Ферменты, транскрибирующие вирусный геном. Тран­скрипция ряда ДНК -содержащих вирусов — паповавирусов, аденовирусов, вирусов герпеса, парвовирусов, гепаднавирусов осуществляется в ядре клетки, и в этом процессе широко используются механизмы клеточной транскрип­ции — ферменты транскрипции и дальнейшей модифи­кации транскриптов. Транскрипция этих вирусов осуще­ствляется клеточной РНК-полимеразой II — ферментом, который осуществляет транскрипцию клеточного генома. Однако особая группа транскриптов аденовируса синте­зируется с помощью другого клеточного фермента — РНК-полимеразы III. У двух других семейств ДНК-содержащих вирусов животных — вирусов оспы и иридовирусов — транскрипция происходит в цитоплазме. По­скольку в цитоплазме нет клеточных полимераз, тран­скрипция этих вирусов нуждается в специальном вирус­ном ферменте — вирусной РНК-полимеразе. Этот фермент является структурным вирусным белком.

У РНК -содержащих вирусов транскрипция осуще­ствляется вирус-специфическими транскриптазами, т. е. ферментами, закодированными в вирусном геноме. Вирусспецифические транскриптазы могут быть как структурными белками, входящими в состав вириона (эндогенная транскриптаза), так и неструктурными белками, которые синтезируются в зараженной клетке, но не включаются в вирион.

Транскрипция в зараженной клетке. Синтез компле­ментарных РНК на родительских матрицах с помощью родительской транскриптазы носит название первичной транскрипции в отличие от вторичной транскрипции, происходящей на более поздних стадиях инфекционного цикла на вновь синтезированных, дочерних матрицах, с помощью вновь синтезированной транскриптазы. Боль­шая часть иРНК в зараженной клетке является продуктом вторичной транскрипции.

Транскриптивные комплексы. У сложно устроенныхРНК- содержащих вирусов животных транскрипция происходит не на матрице голой РНК, а в составе вирусных нуклеокапсидов или сердцевин (транскриптивные комплексы). Связанные с геномом капсидные белки не только не препятствуют транскрипции, но и необходи­мы для нее, обеспечивая правильную конформацию тяжа РНК, защиту его от клеточных протеаз, связь отдельных фрагментов генома друг с другом, а также регуляцию транскрипции.

Вновь синтезированные иРНК выходят из транскриптивных комплексов и транспортируются к рибосомам.

На модели реовирусов было показано, что обе нити двунитчатых молекул РНК остаются в составе сердцевины, а вновь синтезированные иРНК выталкиваются из серд­цевины через отверстия в 12 полых цилиндров, находящих­ся в составе сердцевины (рис. 17).

Регуляция транскрипции. Транскрипция вирусного генома строго регулируется на протяжении инфекцион­ного цикла. Регуляция осуществляется как клеточными, так и вирусепецифическими механизмами. У некоторых вирусов, в основном ДНК-содержащих, существует три периода транскрипций — сверхранняя, ранняя и поздняя. К этим вирусам относятся вирусы оспы, герпеса, паповавирусы, аденовирусы. В результате сверхранней и ран­ней транскрипции избирательно считываются сверхранние и ранние гены с образованием сверхранних или ранних иРНК. При поздней транскрипции считывается другая часть вирусного генома — поздние гены, с образованием поздних иРНК. Количество поздних генов обычно пре­вышает количество ранних генов. Многие сверхранние гены являются генами для неструктурных белков — фер­ментов и регуляторов транскрипции и репликации вирус­ного генома. Напротив, поздние гены обычно являются генами для структурных белков. Обычно при поздней транскрипции считывается весь геном, но с преоблада­нием транскрипции поздних генов.

Фактором регуляции транскрипции у ядерных вирусов является транспорт транскриптов из ядра в цитоплазму, к месту функционирования иРНК — полисомам.

Продуктом сверхранней транскрипции вирусов герпеса являются α-белки. Функция одного или нескольких из них необходима для транскрипции следующей группы генов, кодирующих β-белки. В свою очередь β-белки включают транскрипцию последней группы поздних генов, кодирующих γ-белки. Такой тип регуляции получил название «каскадной».

У РНК-содержащих вирусов синтез транскриптов также строго контролируется в отношении как количества каждого класса транскриптов, так и периода инфекции, когда определенные транскрипты синтезируются с макси­мальной скоростью. На ранней стадии инфекции преиму­щественно синтезируются транскрипты двух генов вируса гриппа — NP и NS, на поздней стадии инфекции — транскрипты генов М, НА и NA. Остальные три гена для Р-белков синтезируются примерно с одинаковой скоростью на протяжении всего периода инфекции. У реовирусов на ранней стадии инфекции преимуществен­но транскрибируется 4 из 10 фрагментов генома и лишь на поздней стадии транскрибируется весь геном. Однако если поместить геном вируса в бесклеточную РНК-синтезирующую систему, будет происходить равномерная транскрипция всех 10 фрагментов генома. Эти факты говорят о жестком контроле транскрипции со стороны клетки-хозяина и возможном наличии специфических клеточных регуляторов.

У парамиксовирусов и рабдовирусов весь геном представляет собой одну транскрипционную единицу с един­ственным промотором (участок связывания транскриптазы и начала транскрипции) у 3'-конца. Вдоль генома суще­ствует как бы градиент эффективности транскрипции. Ближайший к 3'-концу ген (ген наиболее обильного белка NP) считывается наиболее часто. Напротив, ген для самого высокомолекулярного белка — транскрипта­зы,— содержащегося лишь в количестве нескольких моле­кул на вирион, находится на противоположном конце генома и транскрибируется значительно реже. Такая регуляция экспрессии генов путем порядка их располо­жения в геноме носит название «полярность». При этом способе регуляции количество молекул полипептидов определяется полярностью гена, т. е. расстоянием его от промотора.

ТРАНСЛЯЦИЯ

Синтез белка в клетке происходит в результате трансляции иРНК. Трансляцией называется процесс пере­вода генетической информации, содержащейся в иРНК, на специфическую последовательность аминокислот. Иными словами, в процессе трансляции осуществляется перевод 4-буквенного языка азотистых оснований на 20- буквенный язык аминокислот.

Транспортные РНК. Свою аминокислоту тРНК узнают по конфигурации ее боковой цепи, а специфический фермент аминоацилсинтетаза катализирует ассоциацию тРНК с аминокислотой. В клетке существует большое количество разнообразных видов тРНК. Поскольку для каждой аминокислоты должна быть своя тРНК, количе­ство видов тРНК должно быть не меньше 20, однако в клетке их значительно больше. Это связано с тем, что для каждой аминокислоты существует не один, а несколь­ко видов тРНК. Молекула тРНК представляет собой однонитчатую РНК со сложной структурой в виде клено­вого листа (рис. 18). Один ее конец связывается с амино­кислотой (конеца), а противоположный — с нуклеоти­дами иРНК, которым они комплементарны (конец б). Три нуклеотида на иРНК кодируют одну аминокислоту и называются «триплет» или «кодон», комплементарные кодону три нуклеотида на конце тРНК называются «антикодон».

Рибосомы. Синтез белка в клетке осуществляется на рибосоме. Рибосома состоит из двух субъединиц,- большой и малой, малая субъединица примерно в два раза меньше большой. Обе субъединицы содержат по одной молекуле рибосомальной РНК и ряд белков. Рибосомальные РНК синтезируются в ядре на матрице ДНК с помощью РНК-полимеразы I. В малой рибосомальной субъединице есть канал, в котором находится информа­ционная РНК. В большой рибосомальной субъединице есть две полости, захватывающие также малую рибосомальную субъединицу. Одна из них содержит аминоацильный центр (A-центр), другая — пептидильный центр (П-центр) (рис. 19).

Фазы трансляции. Процесс трансляции состоит из трех фаз: 1) инициации, 2) элонгации и 3) терминации.

Инициация трансляции. Это наиболее ответ­ственный этап в процессе трансляции, основанный на узнавании рибосомой иРНК и связывании с ее особыми участками. Рибосома узнает иРНК благодаря «шапочке» на 5'-конце и скользит к З'-концу, пока не достигнет инициаторного кодона, с которого начинается трансляция. В эукариотической клетке инициаторным кодоном являет­ся кодон АУГ или ГУГ, кодирующие метионин. С метио­нина начинается синтез всех полипептидных цепей.

Вначале с иРНК связывается малая рибосомальная субъединица. К комплексу иРНК с малой рибосомальной субъединицей присоединяются другие компоненты, необ­ходимые для начала трансляции. Это несколько молекул белка, которые называются «инициаторные факторы». Их по крайней мере три в прокариотической клетке и более девяти в эукариотической клетке. Инициаторные факторы определяют узнавание рибосомой специфических иРНК и, таким образом, являются определяющим фактором в дискриминации между различными иРНК, присутствующими в клетке, как правило, в избыточном количестве.

В результате формируется комплекс, необходимый для инициации трансляции, который называется инициаторным комплексом. В инициаторный комплекс входят: 1) иРНК; 2) малая рибосомальная субъединица; 3) аминоацил-тРНК, несущая инициаторную аминокислоту; 4) инициаторные факторы; 5) несколько молекул ГТФ.

В рибосоме осуществляется слияние потока информа­ции с потоком аминокислот. Аминоацил-тРНК входит в A-центр большой рибосомальной субъединицы, и ее антикодон взаимодействует с кодоном иРНК, находящей­ся в малой рибосомальной субъединице. При продвижении иРНК на один кодон тРНК перебрасывается в пептидильный центр, и ее аминокислота присоединяется к ини- циаторной аминокислоте с образованием первой пептид­ной связи. Свободная от аминокислоты тРНК выходит из рибосомы и может опять функционировать в транспор­те специфических аминокислот. На ее место из А-центра в П-центр перебрасывается новая тРНК и образуется новая пептидная связь. В A-центре появляется вакантный кодон иРНК, к которому немедленно присоединяется соответствующая тРНК и происходит присоединение новых аминокислот к растущей полипептидной цепи (см. рис. 19).

Элонгация трансляции. Это процесс удлине­ния, наращивания полипептидной цепи, основанный на присоединении новых аминокислот с помощью пептид­ной связи. Происходит постоянное протягивание нити иРНК через рибосому и «декодирование» заложенной в ней генетической информации (рис. 20). иРНК функ­ционирует на нескольких рибосомах, каждая из которых синтезирует одну и ту же полипептидную нить, коди­руемую данной иРНК. Группа рибосом, работающих на одной молекуле иРНК, называется полирибосомой, или полисомой. Размер полисом значительно варьирует в зависимости от длины молекулы и РНК, а также от расстояния между рибосомами. Так, полисомы, которые синтезируют гемоглобин, состоят из 4—6 рибосом, высо­комолекулярные белки синтезируются на полирибосомах, содержащих 20 и более рибосом.

Терминация трансляции. Терминация транс­ляции происходит в тот момент, когда рибосома доходит до терминирующего кодона в составе иРНК. Трансляция прекращается, и полипептидная цепь освобождается из полирибосомы. После окончания трансляции полири­босомы распадаются на субъединицы, которые могут войти в состав новых полирибосом.

Свойства полирибосом. По топографии в клетке полирибосомы делят на две большие группы — свободные и связанные с мембранами эндоплазматической сети, которые составляют соответственно 75 и 25%. Между двумя группами полирибосом нет принципиальных струк­турных и функциональных различий, они формируются из одного и того же пула субъединиц и в процессе транс­ляции могут обмениваться субъединицами. Мембраны, с которыми связаны полирибосомы, называются грубыми или шероховатыми мембранами в отличие от гладких мембран, не содержащих полирибосомы. Связь полири­босом с мембранами осуществляется с помощью сигналь­ного пептида — специфической последовательности на аминоконце синтезирующихся гликопротеидов. На связан­ных с мембранами полирибосомах синтезируются внутримембранные белки, которые сразу же после синтеза оказываются в составе мембран.

Трансляция в зараженных вирусом клетках. Стратегия вирусного генома, использующего клеточный аппарат трансляции, должна быть направлена на создание меха­низма для подавления трансляции собственных клеточных иРНК и для избирательной трансляции вирусных иРНК, которые всегда находятся в значительно меньшем коли­честве, чем клеточные матрицы. Этот механизм реали­зуется на уровне специфического узнавания малой рибосомальной субъединицей вирусных иРНК, т. е. на уровне формирования инициирующего комплекса. По­скольку многие вирусы не подавляют синтез клеточных иРНК, в зараженных клетках возникает парадоксальная ситуация: прекращается трансляция огромного фонда функционально активных клеточных иРНК, и на освобо­дившихся рибосомах начинается трансляция одиночных молекул вирусных иРНК. Специфическое узнавание рибосомой вирусных иРНК осуществляется за счет вирусспецифических инициаторных факторов.

Два способа формирования вирусных белков. По­скольку геном вируса животных представлен молекулой, кодирующей более чем один белок, вирусы поставлены перед необходимостью синтеза либо длинной иРНК, кодирующей один гигантский полипептид-предшественник, который затем должен быть нарезан в специфических точках на функционально активные белки, либо коротких моноцистронных и PHК, каждая из которых кодирует один белок. Таким образом, существуют два способа формирования вирусных белков: 1) иРНК транслируется в гигантский полипептид-предшественник, который после синтеза последовательно нарезается на зрелые функцио­нально активные белки; 2) иРНК транслируется с обра­зованием зрелых белков, или белков, которые лишь незна­чительно модифицируются после синтеза.

Первый способ трансляции характерен для РНК-содержащих «плюс-нитевых» вирусов — пикорнавирусов и тогавирусов. Их иРНК транслируется в гигантскую полипептидную цепь, так называемый полипротеид, который сползает в виде непрерывной ленты с рибосомного «кон­вейера» и нарезается на индивидуальные белки нужного размера. Нарезание вирусных белков является много­ступенчатым процессом, осуществляемым как вирусспецифическими, так и клеточными протеазами. В клетках, зараженных пикорнавирусами, на конце полипротеина- предшественника находится белок с протеазной актив­ностью. Вирусная протеаза осуществляет нарезание предшественника на 3 фрагмента, один из которых являет­ся предшественником для структурных белков, второй — для неструктурных белков, функции третьего фрагмента неизвестны. В дальнейшем нарезании участвуют вирус специфические и клеточные протеазы.

Интересный вариант первого способа трансляции обнаруживается у альфа-вирусов (семейство тогавирусов). Геномная РНК с коэффициентом седиментации 42 S транслируется с образованием полипептида-предшественника для неструктурных белков. Однако доминирующей в зараженных клетках иРНК является РНК с коэффи­циентом седиментации 26 S, составляющая одну треть геномной РНК. Эта иРНК транслируется с образованием предшественника для структурных белков.

Второй способ формирования белков характерен для ДНК-содержащих вирусов и большинства РНК- содержащих вирусов. При этом способе синтезируются короткие моноцистронные иРНК в результате избира­тельной транскрипции одного участка генома (гена). Однако все вирусы широко используют механизм посттрансляционного нарезания белка.

Вирусспецифические полисомы. Поскольку длина ви­русных иРНК варьирует в широких пределах, размер вирусспецифических полисом также широко варьирует: от 3—4 до нескольких десятков рибосом на одной нити иРНК. При инфекциях, вызванных пикорнавирусами, формируются крупные полисомы, представляющие собой агрегаты, состоящие из 20—60 рибосом. При инфекциях, вызванных другими вирусами животных, использующими второй способ трансляции, формируются полисомы не­большого размера. Между размерами иРНК и величиной полисом существует определенная корреляция, однако в ряде случаев полисомы имеют больший или меньший размер по сравнению с ожидаемым. Эта особенность вирусных полисом объясняется необычным простран­ственным расположением рибосом на вирусных матрицах, связанных с меньшей плотностью упаковки рибосом на молекуле иРНК.

Вирусспецифические полисомы могут быть как сво­бодными, так и связанными с мембранами. В зараженных вирусом полиомиелита клетках полипротеид синтезируется на связанных с мембранами полисомах; при инфекциях, вызванных сложно устроенными вирусами, формируются как свободные, так и связанные с мембранами полисомы, которые вовлечены в синтез разных классов вирусных полипептидов. Внутренние белки обычно синтезируются на свободных полисомах, гликопротеиды всегда синте­зируются на полисомах, связанных с мембранами.

Модификация вирусных белков. В эукариотической клетке многие белки, в том числе вирусные, подвергаются посттрансляционным модификациям, и зрелые функцио­нально активные белки часто не идентичны их вновь синтезированным предшественникам. Широко распростра­нены такие посттрансляционные ковалентные модифика­ции, как гликозилирование, ацилирование, метилирование, сульфирование (образование дисульфидных связей), протеолитическое нарезание и, наконец, фосфорилирование. В результате вместо 20 генетически закодированных аминокислот из различных клеток разных органов эукариотов выделено около 140 дериватов аминокислот.

Среди широкого спектра модифицированных реакций лишь небольшое количество процессов является обрати­мыми: 1) фосфорилирование-дефосфорилирование; 2) ацилирование-деацилирование; 3) метилирование-демети­лирование; 4) образование дисульфидных связей. Среди подобных обратимых модификаций белков следует искать процессы, обусловливающие механизм регуляции актив­ности белков в эукариотической клетке.

Гликозилирование. В составе сложно устроенных РНК- и ДНК-coдержащих вирусов имеются белки, содер­жащие ковалентно присоединенные боковые цепочки углеводов — гликопротеиды. Гликопротеиды расположе­ны в составе вирусных оболочек и находятся на поверхности вирусных частиц. Своей гидрофобной частью они погружены в двойной слой липидов, а некоторые гликопротеиды проникают через него и взаимодействуют с внутренним компонентом вируса (рис. 21). Гидрофиль­ная часть молекулы обращена наружу.

Синтез и внутриклеточный транспорт гликопротеидов характеризуется рядом особенностей, присущих клеточ­ным внутримембранным белкам. Их синтез осуществляется на полисомах, ассоциированных с мембранами, и белки сразу же после синтеза попадают в шероховатые мембраны, откуда транспортируются в мембраны эндоплазматической сети и в комплекс Гольджи, где происходит модификация и комплектование углеводной цепочки, а затем — в плазматическую мембрану в ряде случаев путем слияния с ней везикул комплекса Гольджи. Такой целена­правленный транспорт осуществляется благодаря имеющей­ся на аминоконце белка специфической последовательности из 20—30 аминокислот (сигнальному пептиду). Сигналь­ный пептид отрезается от белковой молекулы после того, как гликопротеид достигает плазматической мембра­ны.

Гликозилирование полипептидов является сложным многоступенчатым процессом, первые этапы которого начинаются уже в процессе синтеза полипептидов, и первый сахар присоединяется к полипептидной цепи, еще не сошедшей с рибосомы. Последующие этапы гликозилирования происходят путем последовательного присоеди­нения сахаров в виде блоков к углеводной цепочке в процессе транспорта полипептида к плазматической мембране. Окончательное формирование углеводной цепочки может завершаться на плазматической мембране перед сборкой вирусной частицы. Процесс гликозилирования не влияет на транспорт полипептида к плазматической мембране, но имеет существенное значение для экспрес­сии биологической активности белка. При подавлении гликозилирования соответствующими ингибиторами (ана­логи сахаров типа 2-дезоксиглюкозы, антибиотик туни­камицин) нарушается синтез полипептидов, блокируется сборка вирионов миксовирусов, рабдовирусов, альфа-вирусов или образуются неинфекционные вирионы герпеса и онковирусов.

Сульфирование. Некоторые белки сложно устроенных РНК- и ДНК-содержащих вирусов сульфируются после трансляции. Чаще всего сульфированию подвергаются гликопротеиды, при этом сульфатная группа связывается с сахарным компонентом гликопротеида.

Ацилирование. Ряд гликопротеидов сложно устроенных РНК-содержащих вирусов (НА2 вируса гриппа, белок G вируса везикулярного стоматита, белок HN вируса ньюкаслской болезни и др.) содержат ковалентно связан­ные 1—2 молекулы жирных кислот.

Нарезание. Многие вирусные белки и в первую очередь гликопротеиды приобретают функциональную активность лишь после того, как произойдет их нарезание в специфических точках протеолитическими ферментами. Нарезание происходит либо с образованием двух функцио­нальных белковых субъединиц (например, большая и малая субъединицы гемагглютинина вируса гриппа, два гликопротеида, Е2 и Е3, вируса леса Семлики) либо с образованием одного функционально активного белка и неактивного фрагмента, например белки F и HN парамиксовирусов. Нарезание обычно осуществляется клеточными ферментами. У многих сложно устроенных вирусов животных, имеющих гликопротеид, нарезание необходимо для формирования активных прикрепительных белков и белков слияния и, следовательно, для приобретения вирусом способности инфицировать клетку. Лишь после нарезания этих белков вирусная частица приобретает инфекционную активность. Таким образом, можно говорить о протеолитической активации ряда вирусов, осуществляемой с помощью клеточных ферментов.

Фосфорилирование. Фосфорпротеиды содержатся прак­тически в составе всех вирусов животных, РНК- и ДНК- содержащих, просто и сложно устроенных. В составе большинства вирусов обнаружены протеинкиназы, однако фосфорилирование может осуществляться как вирусными, так и клеточными ферментами. Обычно фосфорилируются белки, связанные с вирусным геномом и осуществляющие регулирующую роль в его экспрессии. Одним из примеров является фосфорилирование белка онкогенных вирусов, обусловливающего клеточную трансформацию. Этот белок является продуктом гена Src и одновременно протеинкиназой и фосфопротеидом, т. е. способен к самофосфорилированию.

С процессом фосфорилирования связан механизм антивирусного действия интерферона. В зараженных вирусом клетках интерферон индуцирует синтез протеинкиназы, которая фосфорилирует субъединицу инициирую­щего фактора трансляции ЭИФ-2, в результате чего блокируется трансляция вирусных информационных РНК. Фосфорилирование белков играет регулирующую роль в транскрипции и трансляции вирусных иРНК, специфиче­ском узнавании вирусных иРНК рибосомой, белокнуклеи- новом и белок-белковом узнавании на стадии сборки вирусных частиц.

РЕПЛИКАЦИЯ

Репликацией называется синтез молекул нуклеиновой кислоты, гомологичных геному. В клетке происходит репликация ДНК, в результате которой образуются дочерние двунитчатые ДНК. Репликация происходит на расплетенных участках ДНК и идет одновременно на обеих нитях от 5'-конца к 3'-концу (рис. 22). Поскольку две нити ДНК имеют противоположную полярность 5' 3' и 5' 3', а участок репликации («вилка») движется в одном направлении, одна цепь строится в обратном направлении отдельными фрагментами, которые назы­ваются фрагментами Оказаки (по имени ученого, впервые предложившего такую модель). После синтеза фрагменты Оказаки «сшиваются» лигазой в единую нить.

Репликация ДНК осуществляется ДНК-полимеразами. Для начала репликации необходим предварительный синтез короткого участка РНК на матрице ДНК, который называется затравкой. С затравки начинается синтез нити ДНК, после чего РНК быстро удаляется с растущего участка.

Репликация вирусных ДНК. Репликация генома ДНК- содержащих вирусов в основном катализируется клеточными фрагментами и механизм ее сходен с механизмом репли­кации клеточной ДНК.

Каждая вновь синтезирован­ная молекула ДНК состоит из одной родительской и одной вновь синтезированной нити. Та­кой механизм репликации назы­вается полуконсервативным.

У вирусов, содержащих коль­цевые двунитчатые ДНК (паповавирусы), разрезается одна из нитей ДНК, что ведет к раскру­чиванию и снятию супервитков на определенном участке моле­кулы (рис. 23).

При репликации однонитча­тых ДНК (семейство парвовирусов) происходит образование двунитчатых форм, которые представляют собой промежу­точные репликативные формы.

Репликация вирусных РНК. В клетке нет ферментов, спо­собных осуществить репликацию РНК. Поэтому ферменты, участ­вующие в репликации, всегда вирусспецифические. Реплика­цию осуществляет тот же фер­мент, что и транскрипцию; репликаза является либо модифицированной транскриптазой, либо при репликации соответствующим образом модифици­руется матрица.

Репликация однонитчатых РНК осуществляется в два этапа: вначале синтезируются комплементарные геному нити, которые в свою очередь становятся матрицами для синтеза копий генома. У «минус-нитевых» вирусов первый этап репликации — образование комплементарных нитей сходен с процессом транскрипции. Однако между ними есть существенное отличие: если при транскрипции считываются определенные участки генома, то при репли­кации считывается весь геном. Например, иРНК парамиксовирусов и рабдовирусов являются короткими молеку­лами, комплементарными разным участкам генома, а иРНК вируса гриппа на 20—30 нуклеотидов короче каждого фрагмента генома. В то же время матрицы для репликации являются полной комплементарной последовательностью генома и называются антигеномом.

В зараженных клетках существует механизм переклю­чения транскрипции на репликацию. У «минус-нитевых» вирусов этот механизм обусловлен маскировкой точек терминации транскрипции на матрице генома, в результате чего происходит сквозное считывание генома. Точки терминации маскируются одним из вирусных белков.

При репликации растущая «плюс-нить» вытесняет ранее синтезированную «плюс-нить» либо двухспиральная матри­ца консервируется (рис. 24). Более распространен первый механизм репликации.

Репликативные комплексы. Поскольку образующиеся нити ДНК и РНК некоторое время остаются связанными с матрицей, в зараженной клетке формируются реплика­тивные комплексы, в которых осуществляется весь процесс репликации (а в ряде случаев также и транскрипции) генома. Репликативный комплекс содержит геном, репликазу и связанные с матрицей вновь синтезированные цепи нуклеиновых кислот. Вновь синтезированные геномные молекулы немедленно ассоциируются с вирусными белками, поэтому в репликативных комплексах обнару­живаются антигены. В процессе репликации возникает частично двунитчатая структура с однонитчатыми «хвоста­ми», так называемый репликативный предшественник (РП).

Репликативные комплексы ассоциированы с клеточ­ными структурами либо с предсуществующими, либо вирусиндуцируемыми. Например, репликативные комплек­сы пикорнавирусов ассоциированы с мембранами эндо- плазматической сети, вирусов оспы — с цитоплазматиче­ским матриксом, репликативные комплексы аденовирусов и вирусов герпеса в ядрах находятся в ассоциации со вновь сформированными волокнистыми структурами и связаны с ядерными мембранами. В зараженных клетках может происходить усиленная пролиферация клеточных структур, с которыми связаны репликативные комплексы, или их формирование из предсуществующего материала. Напри­мер, в клетках, зараженных пикорнавирусами, происходит пролиферация гладких мембран. В клетках, зараженных реовирусами, наблюдается скопление микротрубочек; в клетках, зараженных вирусами оспы, происходит формиро­вание цитоплазматического матрикса.

В репликативных комплексах одновременно с синтезом геномных молекул осуществляется транскрипция и происходит сборка нуклеокапсидов и сердцевин, а при некоторых инфекциях — и вирусных частиц. О сложной структуре репликативных комплексов говорит, например, такой состав репликативного комплекса аденовирусов: реплицирующиеся ДНК, однонитчатые ДНК, однонит­чатые РНК, ферменты репликации и транскрипции, структурные и неструктурные вирусные белки и рад клеточных белков.

Регуляция репликации. Вновь образованная молекула геномной РНК может быть использована различным образом. Она может ассоциироваться с капсидными белками и войти в состав вириона, служить матрицей для синтеза новых геномных молекул, либо — для об­разования иРНК, наконец, у «плюс-нитевых» вирусов она может выполнять функции иРНК и связываться с рибосомами. В клетке существуют механизмы, регу­лирующие использование геномных молекул. Регуляция идет по принципу саморегуляции и реализуется путем взаимодействия вирусных РНК и белков благодаря возможности белокнуклеинового и белок-белкового узнавания. Например, роль терминального белка пикорнавирусов заключается в запрещении трансляции иРНК и отборе молекул для формирования вирионов. Белок, связывающийся с 5'-концом геномной РНК, в свою очередь узнается капсидными белками и служит сигналом для сборки вирусной частицы с участием данной молекулы РНК. По тому же принципу отбираются геномные молекулы РНК у «минус-нитевых» вирусов: к 3'-концу геномных РНК присоединяется молекула капсидного вирусного белка, к которой подстраиваются другие белковые субъединицы в результате белок-белкового узнавания, и такая молекула РНК войдет в состав вириона или послужит матрицей для репликации. Для переключения ее на транскрипцию должен возникнуть запрет белокнуклеинового взаимодействия. В репликации ДНК аденовирусов участвует молекула белка, которая связывается с концом вирусной ДНК и необходима для начала репликации. Таким образом, для начала репликации необходим синтез вирусных белков: в при­сутствии ингибиторов белкового синтеза отсутствует переключение транскрипции на репликацию.

СБОРКА ВИРУСНЫХ ЧАСТИЦ

Синтез компонентов вирусных частиц в клетке разоб­щен и может протекать в разных структурах ядра и цитоплазмы. Вирусы, репликация которых проходит в ядрах, условно называют ядерными. В основном это ДНК-содержащие вирусы: аденовирусы, паповавирусы, парвовирусы, вирусы герпеса. Вирусы, реплицирующиеся в цитоплазме, называют цитоплазматическими. К ним относятся из ДНК-содержащих вирус оспы и большинство РНК-содержащих вирусов, за исключением ортомиксовирусов и ретровирусов. Однако это разделение весьма относительно, потому что в репродукции тех и других вирусов есть стадии, протекающие соответственно в цитоплазме и ядре.

Внутри ядра и цитоплазмы синтез вирусспецифических молекул также может быть разобщен. Так, например, синтез одних белков осуществляется на свободных полисомах, а других — на полисомах, связанных с мембранами. Вирусные нуклеиновые кислоты синтезиру­ются в ассоциации с клеточными структурами вдали от полисом, которые синтезируют вирусные белки. При таком дисъюнктивном способе репродукции образо­вание вирусной частицы возможно лишь в том случае, если вирусные нуклеиновые кислоты и белки обладают способностью при достаточной концентрации узнавать друг друга в многообразии клеточных белков и нуклеи­новых кислот и самопроизвольно соединяться друг с другом, т. е. способны к самосборке.

В основе самосборки лежит специфическое белокнук- леиновое и белок-белковое узнавание, которое может происходить в результате гидрофобных, солевых и водородных связей, а также стерического соответствия. Белок-нуклеиновое узнавание ограничено небольшим участком молекулы нуклеиновой кислоты и определяется уникальными последовательностями нуклеотидов в неко­дирующей части вирусного генома. С этого узнавания участка генома вирусными капсидными белками начинается процесс сборки вирусной частицы. Присоединение осталь­ных белковых молекул осуществляется за счет специфичеческих белок-белковых взаимодействий или неспецифиче­ских белокнуклеиновых взаимодействий.

В связи с разнообразием структуры вирусов животных разнообразны и способы формирования вирионов, однако можно сформулировать следующие общие принципы сборки.

1. У просто устроенных вирусов формируются провирионы, которые затем в результате модификаций белков превращаются в вирионы. У сложно устроенных вирусов сборка осуществляется многоступенчато. Сначала форми­руются нуклеокапсиды или сердцевины, с которыми взаимодействуют белки наружных оболочек.

2. Сборка сложно устроенных вирусов (за исключе­нием сборки вирусов оспы и реовирусов) осуществляется на клеточных мембранах. Сборка ядерных вирусов проис­ходит с участием ядерных мембран, сборка цитоплазмати­ческих вирусов — с участием мембран эндоплазматической сети или плазматической мембраны, куда независимо друг от друга прибывают все компоненты вирусной части­цы.

3. У ряда сложно устроенных вирусов существуют специальные гидрофобные белки, выполняющие функции посредников между сформированными нуклеокапсидами и вирусными оболочками. Такими белками являются матриксные белки у ряда «минус-нитевых» вирусов (ортомиксовирусов, парамиксовирусов, рабдовирусов).

4. Сборка нуклеокапсидов, сердцевин, провирионов и вирионов происходит не во внутриклеточной жидкости, а в специальных структурах, предсуществующих в клетке или индуцированных вирусом («фабриках»).

5. Сложно устроенные вирусы для построения своих частиц используют ряд элементов клетки-хозяина, например липиды, некоторые ферменты, у ДНК-геномного SV40 — гистоны, у оболочечных РНК-геномных виру­сов — актин, а в составе ареновирусов обнаружены даже рибосомы. Клеточные молекулы несут определенные функции в вирусной частице, однако включение их в вирион может явиться и следствием случайной контами­нации, как, например, включение ряда ферментов клеточ­ных оболочек или клеточных нуклеиновых кислот.

Сборка РНК-содержащих вирусов. Сборка простоустроенных РНК-содержащих вирусов заключается в ассоциации вирусного генома с вирусными капсиднымн белками с образованием нуклеокапсида.

У сложно устроенных РНК-содержащих вирусов про­цессы сборки нуклеокапсидов, сердцевин и зрелых вирио- нов обычно разобщены. Нуклеокапсиды мигрируют к месту сборки вирусных частиц — плазматической мембране (или мембранам эндоплазматической сети) и упорядоченно выстраиваются под участками мембран, с наружной стороны которых уже встроены вирусные суперкапсидные белки. Сборка заключается в том, что участки, содержащие гликопротеиды с примыкающими к ним нуклеокапсидами, постепенно выпячиваются через модифицированную клеточную мембрану. В результате выпячивания образуется «почка», содержащая нуклеокап- сид и оболочку с суперкапсидными белками (см. рис. 10, а). «Почка» отделяется от клеточной мембраны с образо­ванием свободной вирусной частицы. Такой способ формирования вирусных частиц называется почкованием. Почкование может происходить через плазматическую мембрану клетки в наружную среду, как у ортомиксовирусов, парамиксовирусов, рабдовирусов и альфа-вирусов, либо через мембраны эндоплазматической сети в вакуоли (см. рис. 10, б), как у аренавирусов и буньявирусов. В основе выпячивания почки через мембрану лежат обычные клеточные процессы, направленные на отторже­ние непригодного для клетки материала и обновление мембран. Участок будущей почки содержит фиксирован­ный нуклеокапсид, ассоциированный с суперкапсидными белками, но движение мембранных липидов продолжается в силу их текучести, липиды обволакивают будущую почку и вместе с ними из «почки» вытесняются клеточные мембранные белки. В результате этого движения проис­ходит выбухание «почки» над клеточной мембраной. Механизм образования «почки» объясняет, почему в составе почкующихся вирусов не содержится клеточных мембранных белков.

Все вирусные компоненты — нуклеокапсиды и супер­капсидные белки прибывают к месту сборки незави­симо друг от друга. Первыми к месту сборки прибывают суперкапсидные белки. Обычно этими белками являются гликопротеиды, которые синтезируются в полисомах, связанных с мембранами, и через шероховатые, а затем гладкие мембраны в результате слияния с ними везикул комплекса Гольджи транспортируются на наружную поверхность плазматических мембран или остаются в составе везикул.

Включение гликопротеидов в определенные зоны кле­точных мембран приводит к модификациям мембран. Нуклеокапсид узнает эти участки и подходит.к ним с внутренней стороны липидного бислоя. Узнавание осу­ществляется с помощью одного из двух механизмов, 1) нуклеокапсид взаимодействует с участком гликопроте­ида, пронизывающим клеточную мембрану и вышедшим на ее внутреннюю поверхность (см. рис. 21). Такой ме­ханизм имеет место у альфа-вирусов; гидрофобный фраг­мент гликопротеида Е1 проникает через липидный слой на его внутреннюю поверхность, и с этим фрагментом связываются нуклео капе иды, которые позже войдут в сос­тав «почки»; 2) в сборку вовлекается еще один вирус­ный белок, являющийся медиатором сборки, который назы­вается мембранным, или матриксным белком. М-белок синтезируется на свободных полисомах, но сразу после синтеза встраивается в клеточные мембраны с внутрен­ней цитоплазматической стороны липидного бислоя. Этот белок в высокой степени гидрофобен и поэтому способен к бело к-белковым и белоклипидным взаимодействиям.

Включение М-белка в клеточные мембраны является сигналом для сборки вирусной частицы: вслед за включе­нием немедленно следует связывание нуклеокапсидов с мембранами и почкование вирусной частицы. Тем самым М-белок обладает функцией лимитирующего сборку фактора.

Сборка ДНК-содержащих вирусов. В сборке ДНК.-со­держащих вирусов есть некоторые отличия от сборки РНК-содержащих вирусов. Как и у РНК-содержащих вирусов, сборка ДНК-содержащих вирусов является мно­гоступенчатым процессом с образованием промежуточных форм, отличающихся от зрелых вирионов по составу по­липептидов. Первый этап сборки заключается в ассоциа­ции ДНК с внутренними белками и формировании сердце­вин или нуклеокапсидов. При этом ДНК соединяется с предварительно сформированными «пустыми» капсидами.

В результате связывания ДНК с капсидами появляет­ся новый класс промежуточных форм, которые называют­ся неполными формами. Помимо неполных форм с раз­ным содержанием ДНК, существует другая промежуточ­ная форма в морфогенезе — незрелые вирионы, отличаю­щиеся от зрелых тем, что содержат ненарезанные пред­шественники полипептидов. Таким образом, морфогенез вирусов тесно связан с модификацией (процессингом) белков.

Сборка ядерных вирусов начинается в ядре, обычно — с ассоциации с ядерной мембраной. Формирующиеся в ядре промежуточные формы вируса герпеса почкуются в перинуклеарное пространство через внутреннюю ядерную мембрану, и вирус приобретает таким путем оболочку, которая является дериватом ядерной мембраны. Дальней­шая достройка и созревание вирионов происходит в мем­бранах эндоплазматической сети и в аппарате Гольджи, откуда вирус в составе цитоплазматических везикул транс­портируется на клеточную поверхность.

У непочкующихся липидсодержащих вирусов — виру­сов оспы сборка вирионов происходит в уже описанных цитоплазматических вирусных «фабриках». Липидная обо­лочка вирусов в «фабриках» формируется из клеточных липидов путем автономной самосборки, поэтому липидный состав оболочек значительно отличается от состава липи­дов в клеточных мембранах.

ВЫХОД ВИРУСНЫХ ЧАСТИЦ ИЗ КЛЕТКИ

Существуют два способа выхода вирусного потомства из клетки: 1) путем «взрыва»; 2) путем почкования.

Выход из клетки путем взрыва связан с деструкцией клетки, нарушением ее целостности, в результате чего находящиеся внутри клетки зрелые вирусные частицы ока­зываются в окружающей среде. Такой способ выхода из клетки присущ вирусам, не содержащим липопротеидной оболочки (пикорна-, рео-, парво-, папова-, аденовирусы). Однако некоторые из этих вирусов могут транспортиро­ваться на клеточную поверхность до гибели клетки.

Выход из клеток путем почкования присущ вирусам, содержащим липопротеидную мембрану, которая является дериватом клеточных мембран. При этом способе клетка может длительное время сохранять жизнеспособность и продуцировать вирусное потомство, пока не произойдет полное истощение ее ресурсов.

 



<== предыдущая лекция | следующая лекция ==>
Реплікація у прокаріотів та еукаріотів | Критерии оценки и награждение
Поделиться с друзьями:


Дата добавления: 2017-01-21; Мы поможем в написании ваших работ!; просмотров: 2601 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Своим успехом я обязана тому, что никогда не оправдывалась и не принимала оправданий от других. © Флоренс Найтингейл
==> читать все изречения...

2376 - | 2185 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.