Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Технологические свойства металлов и их сплавов

При разработке и создании различных изделий особое внимание уделяется технологическим свойствам материалов из которых изготавливаются эти изделия. Технологические свойства определяют пригодность материала для изготовления из него детали тем или иным способом. К числу этих свойств относятся:

- Обрабатываемость резанием — способность металла изменять свою форму под действием режущего инструмента (резца, фрезы, сверла и т. д.) при различных Операциях механической обработки (обтачивании, фрезеровании, сверлении).

- Ковкость — (деформируемость) — возможность менять форму изделия в горячем состоянии или при нормальной температуре под воздействием давления.

- Свариваемость —способность металлов образовывать прочные соединения при нагреве свариваемых частей до расплавленного или до пластичного состояния. Хорошей свариваемостью обладают стали с низким содержанием углерода. Плохо свариваются чугун, медные и алюминиевые сплавы.

- Жидкотекучесть (литейность) — способность металла в расплавленном состоянии заполнять литейную форму, без оставления пустот. Металл должен обладать способностью давать отливки с резко очерченными контурами, т. е. иметь хорошую литейность. При недостаточной литейност и форма заполняется не полностью и в тонких сечениях отливки образуются недоливы. Повышение температуры заливки улучшает жидкотекучесть сплавов.

Величину жидкотекучести определяют по технологической пробе, т. е. по длине спирального канала, заполненного металлом в контрольной форме. Чем больше жидкотекучесть сплава, тем большей длины участок спирали он заполнит до затвердевания.

- Усадка —сокращение объема расплавленного металла при его застывании и охлаждении до комнатной температуры по сравнению с размерами модели, по которой она была отформована. Соответствующее изменение линейных размеров, выраженное в процентах, называется линейной усадкой.

Величина усадки отливок зависит от химического состава сплава, конфигурации детали и других факторов. При большой усадке металла во время его кристаллизации и охлаждения возникают значительные внутренние напряжения и образуются усадочные раковины. Для удобства усадку отливок выражают в процентах по отношению к размерам модели и называется линейной усадкой..

- Ликвация — свойство сплавов образовывать при охлаждении и кристаллизации отливки с неоднородным химическим составом. Это объясняется тем, что сплав в форме охлаждается неравномерно. Чем больше разница в температуре внешних и внутренних частей отливки при ее охлаждении, тем больше компонентов, плавящихся при более низкой температуре, скапливается в середине сечения.

Различают два вида ликвации:

· Внутрикристаллическая ликвация характерна для фасонных отливок, изготовляемых из сплавов, образующих твердые растворы. В большинстве случаев скорость затвердевания отливки превышает скорость диффузии, которая необходима для выравнивания химического состава. Последнее является основной причиной развития внутрикристаллической ликвации в отливках.

· Зональная ликвация наблюдается в толстостенных отливках, слитках, которые медленно охлаждаются в формах. Зональная ликвация может происходить по двум основным причинам: в связи с расслоением жидкого сплава из-за различной плотности, которое происходит при недостаточном перемешивании сплава при плавке и заливке, или при выпадении из жидкого сплава легких и тяжелых кристаллизующихся фаз.

- Прокаливаемость — способность улучшения различных свойств металла путем закалки на различную глубину.

Все эти технологические свойства металлов и сплавов в комплексе и определяют дальнейшую сферу их применения.

Сталь наряду с бетонами — главнейший конструкционный материал. Широкому использованию сталь обязана высоким физико-механическим и технологическим свойствам. Одним из самых широко используемых технологических свойств стали является ее хорошая свариваемость. При нагреве сталь постепенно размягчается, а при температуре 1300—1400° С становится тестообразной. Если два куска стали, нагретых до тестообразного состояния, сложить вместе и сжать под прессом или молотом, то они соединятся в одно целое или, как говорят, сварятся

Другим свойством стали является ее хорошая прокаливаемость. Сталь, нагретая до температуры 750—900° (температура нагрева зависит от состава стали) и быстро охлажденная в воде или масле, становится более твердой и хрупкой. Процесс, сопровождающийся изменением структуры (т. е. строения) стали, называется закалкой.
Чем больше в стали содержание углерода, тем лучше она закаливается. Сталь с содержанием углерода до 0,15% не закаливается и, наоборот, лучше закаливается сталь с содержанием углерода более 0,5%. Отдельные элементы, входящие в состав стали, влияют на свойства ее следующим образом.


Углерод (С). С увеличением в стали содержания углерода увеличиваются ее твердость, прочность и закаливаемость, но понижаются ковкость и теплопроводность. Чем больше в стали углерода, тем медленнее ее надо нагревать. Сталь с содержанием углерода до 1,4% хорошо куется и прокатывается.
Кремний (Si) повышает прочность и упругость стали, но понижает вязкость и свариваемость. В стали машиностроительных сортов кремния обычно содержится от 0,2 до 0,4%'. Заметного влияния на ковкость кремний не оказывает.
Марганец (Мn). В обычных сортах углеродистых сталей марганца содержится от 0,2 до 1 %, а в специальных сортах до 14%. Марганец повышает сопротивляемость удару, прочность, уменьшает истирание, понижает вредное влияние серы. С увеличением содержания марганца понижается теплопроводность и свариваемость. Марганец способствует перегреву стали и появлению трещин. Чем больше в стали марганца, тем медленнее ее нужно греть; чтобы избежать перегрева и пережога марганцовой стали, необходимо тщательно следить за температурой нагрева и выдержкой при высоких температурах. Правильно нагретые заготовки или слитки из марганцовой стали куются хорошо.
Никель (Ni) увеличивает пластичность, вязкость и прочность стали. Никель не влияет на ковкость стали, но при нагреве никелевых сталей образуется окалина, которая прочно удерживается на поверхности заготовки. Окалина может заковываться в деталь и тем самым понижать ее механические качества.
Хром (Сr) повышает твердость, прочность и упругость стали, но понижает вязкость и теплопроводность. При ковке литого слитка структура хромистой стали плохо поддается разрушению. Для получения в поковке мелкозернистой структуры нужна большая проковка при высокой температуре. Хромистая сталь при температуре 1150—850° С куется удовлетворительно, а при низких температурах (ниже 850° С) твердость поверхности ее резко возрастает, отчего могут появляться трещины.
Молибден (Мо) добавляется в сталь вместе с никелем sr хромом. В сталях различных марок молибдена содержится до 0,45% и редко до 1%. В сплаве с хромом и никелем молибден повышает прочность и вязкость стали, но понижает теплопроводность. Чем больше в стали молибдена, тем медленнее ее надо греть, так как наличие молибдена сильно повышает чувствительность стали к перегреву. Молибденовые стали требуют интенсивной проковки на более мощных, прессах или молотах, чем прессы и молоты, на которых куются углеродистые стали. Охлаждать поковки из молибденовой стали нужно медленно, строго по-технологическому процессу, так как молибденовая сталь принимает воздушную закалку и предрасположена к образованию трещин.
Ванадий (V). В сталях, применяемых в машиностроении,, ванадия обычно содержится до 0,3% и редко до 1%. Ванадий повышает прочность и упругость стали, способствует образованию мелкозернистой структуры слитков. Содержание ванадия в стали улучшает ее ковкость и препятствует перегреву.
Вольфрам (W) повышает твердость и прочность стали, незначительно понижает вязкость и уменьшает теплопроводность. Ковка вольфрамовой стали при низких температурах вызывает трещины. Вольфрамовые стали нужно греть медленнее, чем углеродистые, а ковать при более высоких температурах.
Сера (S) — вредная примесь в стали, но в то же время является таким элементом, который переходит в сталь при ее плавке. Серы в стали должно быть как можно меньше. В сталях, применяемых, для изготовления особо ответственных деталей, содержание серы не должно превышать 0,02—0,03%, а в обычных сталях 0,045—0,055%. Повышенный процент серы в стали приводит к красноломкости. Если такую сталь нагреть до красного каления, то она становится хрупкой, во время ковки дает трещины и разрушения. При обычной температуре сера, содержащаяся в стали, понижает ее прочность.
Фосфор (Р). В отличие от серы фосфор сообщает стали холодноломкость, т. е. вызывает хрупкость при комнатной температуре. Фосфора в сталях, из которых изготовляются ответственные детали, не должно быть больше 0,03—0,04%. Чем больше сталь содержит углерода, тем больше может быть фосфора. Холодноломкость стали часто обнаруживается при правке и гибке изделий во время морозов в неотапливаемом помещении.




<== предыдущая лекция | следующая лекция ==>
Все статьи о Хельбе и способы применения на сайте | Зачем становиться объектно-ориентированным?
Поделиться с друзьями:


Дата добавления: 2016-12-31; Мы поможем в написании ваших работ!; просмотров: 3958 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Начинайте делать все, что вы можете сделать – и даже то, о чем можете хотя бы мечтать. В смелости гений, сила и магия. © Иоганн Вольфганг Гете
==> читать все изречения...

2277 - | 2057 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.