Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Полезный технический приём




Каждый этап задания приносит новую информацию о графике функции, поэтому в ходе решения удобно использовать своеобразный МАКЕТ. Изобразим на черновике декартову систему координат. Что уже точно известно? Во-первых, у графика нет асимптот, следовательно, прямые чертить не нужно. Во-вторых, мы знаем, как функция ведёт себя на бесконечности. Согласно проведённому анализу, нарисуем первое приближение:

Заметьте, что в силу непрерывности функции на и того факта, что , график должен, по меньшей мере, один раз пересечь ось . А может быть точек пересечения несколько?

3) Нули функции и интервалы знакопостоянства.

Сначала найдём точку пересечения графика с осью ординат. Это просто. Необходимо вычислить значение функции при :

Полтора над уровнем моря.

Чтобы найти точки пересечения с осью (нули функции) требуется решить уравнение , и тут нас поджидает неприятный сюрприз:

В конце притаился свободный член, который существенно затрудняет задачу.

Такое уравнение имеет, как минимум, один действительный корень, и чаще всего этот корень иррационален. В худшей же сказке нас поджидают три поросёнка. Уравнение разрешимо с помощью так называемых формул Кардано, но порча бумаги сопоставима чуть ли не со всем исследованием. В этой связи разумнее устно либо на черновике попытаться подобрать хотя бы один целый корень. Проверим, не являются ли оными числа :
– не подходит;
– есть!

Здесь повезло. В случае неудачи можно протестировать ещё и , а если и эти числа не подошли, то шансов на выгодное решение уравнения, боюсь, очень мало. Тогда пункт исследования лучше полностью пропустить – авось станет что-нибудь понятнее на завершающем шаге, когда будут пробиваться дополнительные точки. И если таки корень (корни) явно «нехорошие», то об интервалах знакопостоянства лучше вообще скромно умолчать да поаккуратнее выполнить чертёж.

Однако у нас есть красивый корень , поэтому делим многочлен на без остатка:

Алгоритм деления многочлена на многочлен детально разобран в первом примере урока Сложные пределы.

В итоге левая часть исходного уравнения раскладывается в произведение:

А теперь немного о здоровом образе жизни. Я, конечно же, понимаю, что квадратные уравнения нужно решать каждый день, но сегодня сделаем исключение: уравнение имеет два действительных корня .

На числовой прямой отложим найденные значения и методом интервалов определим знаки функции:

Таким образом, на интервалах график расположен
ниже оси абсцисс , а на интервалах – выше данной оси .

Полученные выводы позволяют детализировать наш макет, и второе приближение графика выглядит следующим образом:

Обратите внимание, что на интервале функция обязательно должна иметь хотя бы один максимум, а на интервале – хотя бы один минимум. Но сколько раз, где и когда будет «петлять» график, мы пока не знаем. К слову, функция может иметь и бесконечно много экстремумов.

4) Возрастание, убывание и экстремумы функции.

Найдём критические точки:

Данное уравнение имеет два действительных корня . Отложим их на числовой прямой и определим знаки производной:

Следовательно, функция возрастает на и убывает на .
В точке функция достигает максимума: .
В точке функция достигает минимума: .

Установленные факты загоняют наш шаблон в довольно жёсткие рамки:

Что и говорить, дифференциальное исчисление – штука мощная. Давайте окончательно разберёмся с формой графика:

5) Выпуклость, вогнутость и точки перегиба.

Найдём критические точки второй производной:

Определим знаки :

График функции является выпуклым на и вогнутым на . Вычислим ординату точки перегиба: .

Практически всё прояснилось.

6) Осталось найти дополнительные точки, которые помогут точнее построить график и выполнить самопроверку. В данном случае их мало, но пренебрегать не будем:

Выполним чертёж:

Зелёным цветом отмечена точка перегиба, крестиками – дополнительные точки. График кубической функции симметричен относительно своей точки перегиба, которая всегда расположена строго посередине между максимумом и минимумом.

 

 





Поделиться с друзьями:


Дата добавления: 2016-12-31; Мы поможем в написании ваших работ!; просмотров: 436 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Настоящая ответственность бывает только личной. © Фазиль Искандер
==> читать все изречения...

2340 - | 2066 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.007 с.