Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Промежуточная (средняя) доля

У многих животных хорошо развита промежуточная доля гипофиза, расположенная между передней и задней долями. По происхождению она относится к аденогипофизу. У человека она представляет тонкую прослойку клеток между передней и задней долями, довольно глубоко заходящую в ножку гипофиза. Эти клетки синтезируют свои специфические гормоны —меланоцитстимулирующие и ряд других.

 

 

.Общим морфологическим признаком для многих разновидностей

соединительной ткани является то, что они состоят из клеток и большого

количества межклеточного вещества, включающего основное аморфное

вещество и специальные волокна.Соединительная ткань в противоположность эпителиальной является тканью внутренней среды, почти нигде не соприкасается с наружной средой, внутренними полостями тела и участвует в построении многих внутренних органов. Соединительная ткань менее богата клетками, чем эпителиальная; ее клетки всегда разъединены значительными прослойками межклеточного вещества.Физико-химические особенности межклеточного вещества и строе-

ние его в значительной степени определяют функциональное значение

разновидностей соединительной ткани. Чем плотнее межклеточное вещество, тем сильнее выражена механическая, опорная функция (костная ткань). Трофическая функция, напротив, лучше обеспечивается полужидким по консистенции межклеточным веществом (рыхлая соединительная ткань, окружающая кровеносные сосуды).

Скелетная соединительная ткань: хрящевая и костная выполняет опорную, защитную, механическую функции, а также принимает участие в водно-солевом обмене веществ.

Хрящевая ткань состоит из хрящевых клеток (хондроцитов), располагающихся группами по 2-3 клетки, основного вещества и волокон. В зависимости от особенностей строения межклеточного вещества различают 3 разновидности хряща: гиалиновый, эластический и волокнистый.

Гиалиновый (стекловидный) хрящ образует почти все суставные хрящи, хрящи ребер, стенок воздухоносных путей, эпифизарные хрящи. В межклеточном веществе, помимо основного вещества, содержатся коллагеновые волокна. У пожилых людей гиалиновый хрящ может обызвествляться.

Эластический хрящ располагается в ряде органов, где хрящевая основа подвергается изгибам. Он образует хрящи ушной раковины,хрящевую часть слуховой трубы, наружного слухового прохода, надгортанник, клиновидный и рожковидный хрящи гортани и др. В межклеточном веществе, помимо коллагеновых, имеются эластические волокна. Эластический хрящ, как правило, никогда не обызвествляется.

Волокнистый хрящ входит в состав межпозвоночных дисков,лобкового симфиза, внутрисуставных дисков и менисков, грудино-ключичного и височно-нижнечелюстного суставов. Его межклеточное вещество содержит большое количество коллагеновых волокон. У пожилых людей волокнистый хрящ может обызвествляться.

Рост хряща осуществляется за счет надхрящницы, покрывающей хрящ снаружи по поверхности. Ее внутренний слой содержит особые клетки - хондробласты, из которых развиваются хрящевые клетки – хондроциты.

Костная ткань отличается особой прочностью. Она состоит из костных клеток (остеоцитов), замурованных в обызвествленное межклеточное вещество, содержащее оссеиновые (коллагеновые) волокна и неорганические соли. Образует все кости скелета, являясь одновременно депо минеральных веществ, преимущественно кальция и фосфора. В костной ткани встречается 3 вида клеток: остеобласты, остеоциты, остеокласты.

Остеобласты (греч. osteon - кость, blastos - зачаток) - это молодые клетки, образующие костную ткань. Встречаются в местах разрушения и восстановления костной ткани. Их очень много в развивающейся кости.Остеоциты (греч. osteon - кость, cytos - клетка) - это костные клетки. образовавшиеся из остеобластов и утратившие способность к делению.Остеокласты (греч. osteon - кость, clao - раздроблять, разбивать) - большие многоядерные клетки, участвующие в разрушении кости и обызвествленного хряща.

Скелетная соединительная ткань: хрящевая и костная выполняет опорную, защитную, механическую функции, а также принимает участие в водно-солевом обмене веществ.

Хрящевая ткань состоит из хрящевых клеток (хондроцитов), располагающихся группами по 2-3 клетки, основного вещества и волокон. В зависимости от особенностей строения межклеточного вещества различают 3 разновидности хряща: гиалиновый, эластический и волокнистый.

Гиалиновый (стекловидный) хрящ образует почти все суставные хрящи, хрящи ребер, стенок воздухоносных путей, эпифизарные хрящи. В межклеточном веществе, помимо основного вещества, содержатся коллагеновые волокна. У пожилых людей гиалиновый хрящ может обызвествляться.

Эластический хрящ располагается в ряде органов, где хрящевая основа подвергается изгибам. Он образует хрящи ушной раковины,хрящевую часть слуховой трубы, наружного слухового прохода, надгортанник, клиновидный и рожковидный хрящи гортани и др. В межклеточном веществе, помимо коллагеновых, имеются эластические волокна. Эластический хрящ, как правило, никогда не обызвествляется.

Волокнистый хрящ входит в состав межпозвоночных дисков,лобкового симфиза, внутрисуставных дисков и менисков, грудино-ключичного и височно-нижнечелюстного суставов. Его межклеточное вещество содержит большое количество коллагеновых волокон. У пожилых людей волокнистый хрящ может обызвествляться.

Рост хряща осуществляется за счет надхрящницы, покрывающей хрящ снаружи по поверхности. Ее внутренний слой содержит особые клетки - хондробласты, из которых развиваются хрящевые клетки – хондроциты.

Костная ткань отличается особой прочностью. Она состоит из костных клеток (остеоцитов), замурованных в обызвествленное межклеточное вещество, содержащее оссеиновые (коллагеновые) волокна и неорганические соли. Образует все кости скелета, являясь одновременно депо минеральных веществ, преимущественно кальция и фосфора. В костной ткани встречается 3 вида клеток: остеобласты, остеоциты, остеокласты.

Остеобласты (греч. osteon - кость, blastos - зачаток) - это молодые клетки, образующие костную ткань. Встречаются в местах разрушения и восстановления костной ткани. Их очень много в развивающейся кости.Остеоциты (греч. osteon - кость, cytos - клетка) - это костные клетки. образовавшиеся из остеобластов и утратившие способность к делению.Остеокласты (греч. osteon - кость, clao - раздроблять, разбивать) - большие многоядерные клетки, участвующие в разрушении кости и обызвествленного хряща.

Пластинчатая костная ткань состоит из костных пластинок, в которых оссеиновые волокна расположены параллельными пучками внутри пластинок или между ними Эта ткань образует все кости скелета человека Пластинчатая костная ткань образует компактную и губчатую костные ткани (костное вещество). В компактной костной ткани костные пластинки располагаются в определенном порядке и придают веществу большую прочность.

 

Обмен веществ и энергии — это совокупность физических, химических и физиологических процессов усвоения питательных веществ в организме с высвобождением энергии. В обмене веществ выделяют два взаимосвязанных, но разнонаправленных процесса — анаболизм и катаболизм. Анаболизм — это совокупность процессов биосинтеза органических соединений, компонентов клеток, органов и тканей из поглощенных питательных веществ. Катаболизм — это процессы расщепления сложных компонентов до простых веществ, обеспечивающих энергетические и пластические потребности организма. Жизнедеятельность организма обеспечивается энергией за счет анаэробного и аэробного

катаболизма поступающих с пищей белков, жиров и углеводов.

ОБМЕН БЕЛКОВ

Белки являются основным пластическим материалом, из которого построены клетки и ткани организма. Они являются составной частью мышц, ферментов, гормонов, гемоглобина, антител и других жизненно важных образований. В состав белков входят различные аминокислоты, которые подразделяются на заменимые и незаменимые. Заменимые аминокислоты могут синтезироваться в организме, а незаменимые — поступают только с пищей.

Поступившие в организм белки расщепляются в кишечнике до аминокислот и в таком виде всасываются в кровь и транспортируются в печень. Поступившие в печень аминокислоты подвергаются дезаминированию и переамитроватю. Эти процессы обеспечивают синтез видоспецифичных аминокислот. Из печени такие аминокислоты поступают в ткани и используются для синтеза тканеспецифичных белков. При избыточном поступлении белков с пищей, после отщепления от них аминогрупп, они превращаются в организме в углеводы и жиры. Белковых депо в организме человека нет.

Наряду с основной, пластической функцией, белки могут играть роль источников энергии. При окислении в организме 1 г белка выделяется 4.1 ккал энергии. Конечными продуктами расщепления белков в тканях являются мочевина, мочевая кислота, аммиак, креатин, креатинин и некоторые другие вещества. Они выводятся из организма почками и частично потовыми железами.

О состоянии белкового обмена в организме судят по азотистому балансу, т. е. по соотношению количества азота, поступившего в организм, и его количества, выведенного из организма. Если это количество одинаково, то состояние называется азотистым равновесием. Состояние, при котором усвоение азота превышает его выведение, называется положительным азотистым балансом. Оно характерно для растущего организма, спортсменов в период их тренировки и лиц после перенесенных заболеваний. При полном или частичном белковом голодании, а так же во время некоторых заболеваний азота усваивается меньше, чем выделяется. Такое состояние называется отрицательным азотистым балансом. При голодании белки одних органов могут использоваться для поддержания жизнедеятельности других, более важных. При этом расходуются в первую очередь белки печени и скелетных мышц; содержание белков в миокарде и тканях мозга остается почти без изменений.

Нормальная жизнедеятельность организма возможна лишь при азотистом равновесии, или положительном азотистом балансе. Такие состояния достигаются, если организм получает около 100г белка в сутки; при больших физических нагрузках потребность в белках возрастает до 120-150 г. Всемирная Организация Здравоохранения рекомендует употреблять не менее 0.75 г белка на 1 кг массы тела в сутки.

ОБМЕН УГЛЕВОДОВ

Углеводы поступают в организм человека, в основном, в виде крахмала и гликогена. В процессе пищеварения их них образуются глюкоза, фруктоза, лактоза и галактоза. Глюкоза всасывается в кровь и через воротную вену поступает в печень. Фруктоза и галактоза превращаются в глюкозу в печеночных клетках. Избыток глюкозы в печени фосфорилируется и переходит в гликоген. Его запасы в печени и мышцах у взрослого человека составляют 300-400 г. При углеводном голодании происходит распад гликогена и глюкоза поступает в кровь.

Углеводы служат в организме основным источником энергии. При окислении углеводов освобождается 4.1 ккал энергии. Для окисления углеводов требуется значительно меньше кислорода, чем при окислений жиров.

Это особенно повышает роль углеводов при мышечной деятельности. При уменьшении концентрации глюкозы в крови резко снижается физическая работоспособность. Большое значение углеводы имеют для нормальной деятельности нервной системы.

Глюкоза выполняет в организме и некоторые пластические функции. В частности, промежуточные продукты ее обмена входят в состав нуклеотидов и нуклеиновых кислот, некоторых ферментов и аминокислот, а также служат структурными элементами клеток. Важным производным глюкозы является аскорбиновая кислота, которая не синтезируется в организме человека.

При голодании запасы гликогена в печени и концентрация глюкозы в крови уменьшаются. То же происходит при длительной и напряженной физической работе без дополнительного приема углеводов. Снижение содержания глюкозы в крови до 0.06-0.07 % приводит к развитию гипогликемии, что проявляется мышечной слабостью, падением температуры тела, а в дальнейшем — судорогами и потерей сознания. При гипергликемии избыток глюкозы быстро выводится почками. Такое состояние может возникать при эмоциональном возбуждении, после приема пищи, богатой легкоусвояемыми углеводами, а также при за-болеваниях поджелудочной железы. При истощении запасов гликогена усиливается синтез ферментов, обеспечивающих реакцию глюконеогенеза, т.е. синтеза глюкозы из лактата или аминокислот.

ОБМЕН ЛИПИДОВ

Физиологическая роль л и п и д о в в организме заключается в том, что они входят в состав клеточных структур и являются богатыми источниками энергии.

Нейтральные жиры расщепляются в кишечнике до глицерина и жирных кислот. Эти вещества, проходя через кишечник, вновь превращаются в жир, который всасывается в лимфу и в небольшом количестве в кровь. Кровь транспортирует жиры в ткани, где они используются для пластического синтеза и в качестве энергетического материала.

Общее количество жира в организме человека колеблется в широких пределах и составляет 10-20% массы тела, при ожирении оно может достигать 40-50%. Жировые депо в организме непрерывно обновляются. При обильном углеводном питании и отсутствии жиров в пище синтез жира в организме может происходить из углеводов.

Нейтральные жиры, поступающие в ткани из кишечника и жировых депо, окисляются и используются как источник энергии. При окислении 1 г жира освобождается 9.3 ккал энергии. В связи с тем, что в молекуле жира содержится относительно мало кислорода, последнего требуется для окисления жиров больше, чем при окислении углеводов. Как энергетический материал жиры используются главным образом в состоянии покоя и при выполнении длительной малоинтенсивной физической работы. В начале более напряженной мышечной деятельности используются преимущественно углеводы, которые в дальнейшем в связи с уменьшением их запасов замещаются жирами. При длительной работе до 80% всей энергии расходуется в результате окисления жиров.

Жировая ткань, покрывающая различные органы, предохраняет их от механических воздействий. Скопление жира в брюшной полости обеспечивает фиксацию внутренних органов, а подкожная жировая клетчатка защищает организм от излишних тепло потерь. Секрет сальных желез предохраняет кожу от высыхания и излишнего смачивания водой.

Пищевые продукты, богатые жирами, содержат некоторое количество фосфатидов и стеринов. Они также синтезируются в стенке кишечника и в печени из нейтральных жиров, фосфорной кислоты и холина. Фосфатид ы входят в состав клеточных мембран, ядра и протоплазмы; они имеют большое значение для функциональной активности нервной ткани и мышц.

Важная физиологическая роль принадлежит стеринам, в частности холестерину. Эти вещества являются источником образования в организме желчных кислот, а также гормонов коры надпочечников и половых желез. При избытке холестерина в организме развивается патологический процесс— атеросклероз. Некоторые стерины пищи, например, витамин Д, также обладают большой физиологической активностью.

Обмен липидов тесно связан с обменом белков и углеводов. Поступающие в организм в избытке белки и углеводы превращаются в жир. Наоборот, при голодании жиры, расщепляясь, служат источником углеводов.

ОБМЕН ВОДЫ И МИНЕРАЛЬНЫХ СОЛЕЙ

Вода является составной частью всех клеток и тканей и в организме находится в виде солевых растворов. Тело взрослого человека на 50-65% состоит из воды, у детей — на 80% и более. В разных органах и тканях содержание воды на единицу массы неодинаково. Оно меньше всего в костях и жировой ткани. В мышцах воды содержится 70%, во внутренних органах — 75-85% их массы. Наиболее велико и постоянно содержание воды в крови.

Лишение организма воды и минеральных солей вызывает тяжелые нарушения и смерть. Полное голодание, но при приеме воды переносится человеком в течение 40-45 суток, без воды — лишь 5-7 дней. При минеральном голодании, несмотря не достаточное поступление в организм других питательных веществ и воды, у животных наблюдались потеря аппетита, отказ от еды, исхудание и смерть.

При обычной температуре и влажности внешней среды суточный водный баланс взрослого человека составляет 2.2-2.8 л. Около 1.5 л жидкости поступает в виде выпитой воды, 600-900 мл — в составе пищевых продуктов и 300-400 мл образуется в результате окислительных реакций. Организм теряет в сутки примерно 1.5 л с мочой, 400-600 мл с потом, 350-400 мл с выдыхаемым воздухом и 100-150 мл с испражнениями.

Обмен минеральных солей в организме имеет большое значение для его жизнедеятельности. Они находятся во всех тканях, составляя примерно 0.9% общей массы тела человека. В состав клеток входят многие минеральные вещества. Нормальное функционирование тканей обеспечивается не только наличием в них тех или иных солей, но и строго определенными их количественными соотношениями. При избыточном поступлении минеральных солей в организм они могут откладываться в виде запасов. Натрий и хлор депонируются в подкожной клетчатке, калий — в скелетных мышцах, кальций и фосфор — в костях.

Физиологическое значение минеральных солей многообразно. Они составляют основную массу костной ткани, определяют уровень осмотического давления, участвуют в образовании буферных систем и влияют на обмен веществ. Велика роль минеральных веществ в процессах возбуждения нервной и мышечной тканей, в возникновении электрических потенциалов в клетках, а также в свертывании крови и переносе ею кислорода.

Все необходимые для организма минеральные элементы поступают с пищей и водой. Большинство минеральных солей легко всасываются в кровь; их выведение из организма происходит главным образом с мочой и потом. При напряженной мышечной деятельности потребность в некоторых минеральных веществах увеличивается.

И коротко о значении витаминов, которые не выполняют энергетическую или пластическую функцию, а являясь, составными компонентами ферментных систем, играют роль катализаторов в обменных процессах. Они представляют собой вещества химической природы, необходимые для нормального обмена веществ, роста, развития организма, поддержания высокой работоспособности и здоровья.

Витамины делят на водорастворимые и.

жирорастворимые. Достаточное поступление витаминов в организм зависит от правильного рациона питания и нормальной функции процессов пищеварения; некоторые витамины синтезируются бактериями в кишечнике. Недостаточное поступление витаминов в организм или полное их отсутствие приводят к нарушению многих функций.

 

ОБМЕН ЭНЕРГИИ

В организме должен поддерживаться энергетический баланс поступления и расхода энергии. Живые организмы получают энергию в виде ее потенциальных запасов, аккумулированных в химических связях молекул углеводов, жиров и белков. В процессе биологического окисления эта энергия высвобождается и используется прежде всего для синтеза АТФ.

Запасы АТФ в клетках невелики, поэтому они должны постоянно восстанавливаться. Этот процесс осуществляется путем окисления питательных веществ. Запас энергии в пище выражается ее калорийностью, т. е. способностью освобождать при окислении то или иное количество энергии. Расход энергии зависит от возраста и пола, характера и количества выполняемой работы, времени года, состояния здоровья и других факторов.

Интенсивность энергетического обмена в организме определяется при помощи калориметрии. Определение энергообмена можно производить методами прямой и непрямой калориметрии.

Прямая калориметрия основана на измерении тепла, выделяемого организмом и проводится с помощью специальных камер. Это тепло определяет величину израсходованной энергии. Прямая калориметрия наиболее точный метод, но он требует длительных наблюдений, громоздкого специального оборудования и неприемлем во многих видах профессиональной и спортивной деятельности.

Значительно проще определять расходы энергии методами непрямой калориметрии. Один из них основан на изучении газообмена, т. е. на определении количества потребляемого организмом кислорода и выдыхаемого за это время углекислого газа. С этой целью используются различные газоанализаторы.

Для окисления различных питательных веществ требуется разное количество кислорода. Количество энергии, освобождаемое при использовании 1 л кислорода, называется его калорическим эквивалентом. При окислении углеводов калорический эквивалент равен 5.05 ккал, при окислении жиров — 4.7 ккал и белков — 4.85 ккал.

В организме обычно окисляется смесь питательных веществ, поэтому калорический эквивалент О колеблется от 4.7 до 5.05 ккал. С увеличением в окисляемой смеси углеводов калорический эквивалент повышается, а с увеличением жиров — снижается.

О величине калорического эквивалента О узнают по уровню дыхательного коэффициента — относительного объема выдыхаемой углекислоты к объему поглощаемого кислорода. Величина ДК зависит от состава окисляемых веществ. При окислении углеводов он равен 1.0, при окислении жиров — 0.7 и белков — 0.8. При окислении смеси питательных веществ величина его колеблется в пределах0.8-0.9.

При втором методе непрямой калориметрии {алиментарная калориметрия) учитывают калорийность принимаемой пищи и ведут наблюдения за массой тела. Постоянство массы тела свидетельствует о балансе между поступлением энергетических ресурсов в организм и их расходованием. Однако при использовании этого метода возможны существенные ошибки; кроме того, он не позволяет определить энерготраты за короткие промежутки времени.

В зависимости от активности организма и воздействий на него факторов внешней среды различают три уровня энергетического обмена: основной обмен, энерготраты в состоянии покоя и энерготраты при различных видах труда.

Основным обменом называется количество энергии, которое тратит организм при полном мышечном покое, через 12-14 часов после приема пищи и при окружающей температуре 20-22°С. У взрослого человека он в среднем равен 1 ккал на 1 кг массы тела в 1 час. У людей при массе тела в 70 кг основной обмен в среднем равен около 1700 ккал. Нормальные его колебания составляют! 10%. У женщин основной обмен несколько ниже, чем у мужчин; у детей он выше, чему взрослых.

Энерготраты в состоянии относительного покоя превышают величину основного обмена. Это обусловлено влиянием на энергообмен процессов пищеварения, терморегуляцией вне зоны комфорта и тратами энергии на поддержание позы тела человека.

Энерготраты при различных видах труда определяются характером деятельности человека. Суточный расход энергии в таких случаях включает величину основного обмена и энергию, необходимую для выполнения конкретного вида труда. По характеру производственной деятельности и величине энерготрат взрослое население может быть разделено на 4 группы: 1) люди умственного труда, их суточный расход энергии составляет 2200-3000 ккал; 2) люди, выполняющие механизированную работу и расходующие за сутки 2300-3200 ккал; 3) люди частично механизированного труда с суточным расходом энергии 2500-3400 ккал;

4) люди немеханизированного тяжелого физического труда, энерготраты которых достигают 3500-4000 ккал. При спортивной деятельности расход энергии может составлять 4500-5000 ккал и более. Это обстоятельство следует учитывать при составлении пищевого рациона спортсменов, который должен обеспечивать восполнение расходуемой энергии.

На механическую работу тратится не вся освобождающаяся в организме энергия. Большая ее часть превращается в тепло. То количество энергии, которое идет на выполнение работы, называется коэффициентом полезного действия. У человека КПД не превышает 20-25 %. КПД при мышечной деятельности зависит от мощности, структуры и темпа движений, от количества вовлекаемых в работу мышц и степени тренированности человека.

РЕГУЛЯЦИЯ ОБМЕНА ВЕЩЕСТВ И ЭНЕРГИИ

Центральной структурой регуляции обмена веществ и энергии является гипоталамус. В гипоталамусе локализованы ядра и центры регуляции голода и насыщения, осморегуляции и энергообмена. В ядрах гипоталамуса осуществляется анализ состояния внутренней среды организма и формируются управляющие сигналы, которые посредством эфферентных систем приспосабливают ход метаболизма потребностям организма. Эфферентными звеньями системы регуляции обмена являются симпатический и парасимпатический отделы вегетативной нервной системы и эндокринная система.

Обмен веществ и получение аккумулируемой в А ТФ энергии протекают внутри клеток. Поэтому важнейшим эффектором, через который вегетативная нервная и эндокринная системы воздействуют на обмен веществ и энергии, являются клетки органов и тканей. Регуляция обмена веществ заключается в воздействии на скорость биохимических реакций, протекающих в клетках.

Воздействие гипоталамуса на обмен белков осуществляется через систему гипоталамус-гипофиз-щитовидная железа. Повышенная продукция тиреотропного гормона передней доли гипофиза приводит к увеличению синтеза тироксина и трийодтиронина щитовидной железы, регулирующих белковый обмен. На обмен белков оказывает прямое влияние соматотропный гормон гипофиза.

Регуляторная роль гипоталамуса в жировом обмене связана с функцией серого бугра. Влияние гипоталамуса на обмен жиров опосредовано изменением гормональной функции гипофиза, щитовидной и половых желез. Недостаточность гормональной функции желез ведет к ожирению. Более сложные расстройства жирового обмена наблюдаются при изменении функций поджелудочной железы. В этом случае они оказываются связанными с нарушениями углеводного обмена.

Истощение запасов гликогена при инсулиновой недостаточности приводит к компенсаторному усилению процессов глюконеогенеза. Вследствие этого в крови увеличивается содержание кетоновых тел. Нарушение фосфолипидного обмена приводит к жировой инфильтрации печени. Лецитины и кефалины при этом легко отдают жирные кислоты, идущие на синтез холестерина, что в последующем обусловливает изменения, связанные с гиперхолестеринемией.

На углеводный обмен гипоталамус воздействует через симпатическую нервную систему. Симпатические влияния усиливают функцию мозгового слоя надпочечников, выделяющего адреналин, который стимулирует мобилизацию гликогена из печени и мышц. Действие «сахарного» укола в дно IV желудочка продолговатого мозга также связано с усилением симпатических влияний. Главными гуморальными факторами регуляции углеводного обмена являются гормоны коры надпочечников и поджелудочной железы. Глюкокортикиоды оказывают ингибирующее воздействие на глюкокиназную реакцию печени, снижая уровень глюкозы в крови. Инсулин способствует утилизации сахара клетками, а глюкагон усиливает мобилизацию гликогена, его расщепление и увеличение содержания глюкозы в крови.

В гипоталамусе расположены нервные центры, регулирующие водно-солевой обмен. Здесь же находятся и осморецепторы, раздражение которых рефлекторно влияет на водно-солевой обмен, обеспечивая постоянство внутренней среды организма. Большую роль в регуляции водно-солевого обмена играют антидиуретический гормон гипофиза и гормоны коры надпочечников. Гормон гипофиза стимулирует обратное всасывание воды в почках и уменьшает этим мочеобразование. Минералкортикоиды действуют на эпителий почечных канальцев и повышают обратное всасывание в кровь натрия. Регулирующее воздействие на обмен воды и солей оказывают также гормоны щитовидной и паращитовидной желез. Первый увеличивает мочеобразование, второй способствует выведению из организма солей кальция и фосфора.

Энергетический обмен в организме регулируется нервной и эндокринной системами. Уровень энергообмена даже в состоянии относительного покоя может изменяться под влиянием условно рефлекторных раздражителей. Например, у спортсменов расход энергии повышается в предстартовом состоянии. Существенное влияние на уровень энергообмена оказывают гормоны гипофиза и щитовидной железы. При усилении функции этих желез величина его повышается, при ослаблении — понижается.

 

Температура тела — комплексный показатель теплового состояния организма животных и человека. Поддержание температуры тела в определенных пределах является одним из важнейших условий нормальной жизнедеятельности организма.

Поддержание постоянной температуры тела у человека осуществляется путем взаимодействия механизмов теплопродукции и теплоотдачи. Устойчивость внутренней температуры при этом обеспечивается функциональной системой, в которую включены терморецепторы кожи, сосудов, центры терморегуляции в мозге и эфферентные механизмы, регулирующие теплопродукцию и теплоотдачу.

Наиболее интенсивно тепло образуется при работе мышц, печени и почек. В покое у человека 70% тепла вырабатывается внутренними органами, а 30% — за счет мышц, волокна которых даже в периоде полного покоя незаметно и очень слабо, но постоянно сокращаются. При физической работе теплообразование возрастает в несколько раз, и доля мышечной работы в этом процессе становится определяющей. Потеря тепла организмом происходит главным образом через кожу, в меньшей степени при дыхании, мочеиспускании и дефекации.

Нормальная жизнедеятельность человека возможна в диапазоне всего в несколько градусов; понижение температуры тела ниже 36° и повышение выше 40—41° одинаково опасно и сопровождается тяжелыми последствиями для организма

Необходимый баланс между образованием тепла и его отдачей поддерживается с помощью центральной нервной системы. Информация о температуре тела поступает в нее от периферии, терморецепторов, одни из которых воспринимают повышение температуры, другие — понижение ее. Наружные (периферические) рецепторы расположены в коже и реагируют на изменение ее температуры, связанное в основном с изменением температуры окружающей среды. Центр, рецепторы расположены в различных областях головного и спинного мозга и реагируют на изменение температуры внутренней среды и, в частности, крови, омывающей нервные центры.

Центры теплорегуляции обеспечивают течение и координацию многочисленных и сложных процессов, обеспечивающих поддержание постоянной температуры тела. Большую роль в процессе теплорегуляции играет эндокринная система, находящаяся под контролем центральной нервной системы.

Терморегуляцию можно разделить на химическую и физиологическую. Химическая терморегуляция осуществляется путём усиления или ослаблением интенсивность метаболической реакции. Физическая терморегуляция осуществляется путём изменения интенсивности отдачи тепла организмом.

Химическая терморегуляция - имеет важное значение при понижении температуры тела. Усиление теплообразования происходит при отклонении от оптимальной температуры (зона комфорта 18° - 20°).Наиболее интенсивное теплообразование происходит в мышцах при физической нагрузке.

Физическая терморегуляция - имеет особо важное значение в поддержании постоянства температуры тела в условиях повышения температуры окружающей среды. У человека теплообмен с окружающей средой включает:

проведение,
излучение,
конвекцию,
испарение.

У детей температура тела характеризуется относительным постоянством и определяется анатомо-физиологическими особенностями детского организма: большим, чем у взрослых, отношением поверхности тела к его массе и несовершенством механизмов терморегуляции. Для поддержания постоянной температуры организм ребенка должен вырабатывать больше тепла на 1 кг массы тела по сравнению с организмом взрослого. Соответственно интенсивность основного обмена у детей, особенно первых месяцев жизни, в пересчете на массу значительно выше, чем у взрослого. Несовершенство механизмов теплорегуляции проявляется ограничением потоотделения у новорожденных, высокой теплопроводностью кожи, связанной с особенностями ее строения и недостаточным развитием слоя подкожно-жировой клетчатки, незрелостью сократительного термо-генеза (мышечной дрожи) из-за недоразвития центра терморегуляции в гипоталамусе.

Созревание у ребенка механизмов регуляции теплоотдачи отстает от развития механизмов регуляции теплопродукции и фактически завершается только к 7-8-летнему возрасту.

Повышение температуры тела у детей раннего возраста может иметь инфекционное и неинфекционное происхождение. В последнем случае это связано с неправильным гигиеническим содержанием ребенка, перегреванием, дегидратацией, постоянными запорами и другим. У детей старшего возраста причиной повышения температуры тела могут быть инфекции (преимущественно вирусного происхождения), коллагеновые заболевания, злокачественные новообразования, заболевания эндокринных желез и другое. При некоторых патолологических состояниях, например гипотиреозе, наблюдается понижение температуры тела.

Терморегуляция — это способность животных организмов поддерживать температуру тела в определённых границах, даже если температура внешней среды сильно отличается. Этот процесс представляет собой один из аспектов гомеостаза — динамически изменяющегося состояния равновесия между внутренней средой организма животного и его внешним окружением. Раздел науки, изучающий такие процессы в зоологии, называется экофизиологией или физиологической экологией. Если организм не может поддерживать температуру в нормальных для данного вида организмов границах, и температура повышается значительно выше верхней границы нормы, такое состояние называется гипертермией. Если же температура снижается значительно ниже нижней границы нормы, такое состояние называется гипотермией.

 

Речь является основным средством человеческого общения. Без нее человек не имел бы возможности получать и передавать большое количество информации, в частности такую, которая несет большую смысловую нагрузку или фиксирует в себе то, что невозможно воспринять с помощью органов чувств (абстрактные понятия, непосредственно не воспринимаемые явления, законы, правила и т.п.). По своему жизненному значению речь имеет полифункциональный характер. Она является не только средством общения, но и средством мышления, носителем сознания, памяти, информации (письменные тексты), средством управления поведением других людей и регуляции собственного поведения человека. Соответственно множеству ее функций речь является полиморфной деятельностью, т.е. в своих различных функциональных назначениях представлена в разных формах: внешней, внутренней, монолога, диалога, письменной, устной и т.д.

Речь - это совокупность произносимых или воспринимаемых звуков, имеющих тот смысл и то же значение, что и соответствующая им система письменных знаков.

Речь имеет три функции: сигнификативную (обозначения), обобщения, коммуникации (передачи знаний, отношений, чувств).

Сигнификативная функция отличает речь человека от коммуникации животных. У человека со словом связано представление о предмете или явлении. Взаимопонимание в процессе общения основано, таким образом, на единстве обозначения предметов и явлений, воспринимающим и говорящим.

Функция обобщения связана с тем, что слово обозначает не только отдельный, данный предмет, но и целую группу сходных предметов и всегда является носителем их существенных признаков.

Третья функция речи - функция коммуникации, т.е. передачи информации. Если первые две функции речи могут быть рассмотрены как внутренняя психическая деятельность, то коммуникативная функция выступает как внешнее речевое поведение, направленное на контакты с другими людьми. В коммуникативной функции речи выделяют три стороны: информационную, выразительную и волеизъявительную.

Информационная сторона проявляется в передаче знаний и тесно связана с функциями обозначения и обобщения.

Выразительная сторона речи помогает передать чувства и отношения говорящего к предмету сообщения.

Волеизъявительная сторона направлена на то, чтобы подчинить слушателя замыслу говорящего.

 

 

 

Усвоение речи ребенком начинается с выделения речевых сигналов из всей совокупности звуковых раздражителей. Затем в его восприятии эти сигналы объединяются в морфемы, слою, предложения, фразы. На базе их формируется связная, осмысленная внешняя речь, обслуживающая общение и мышление Процесс перевода мысли в слово идет в обратном направлении.


Интеллектуальная готовность–наличие у ребенка кругозора, запаса конкретных знаний, необходимого уровня развития познавательных процессов: памяти, мышления, воображения. Интеллектуальная готовность предполагает также соответствующее речевое развитие, формирование у ребенка начальных умений в области учебной деятельности, в частности, умение выделить учебную задачу.

Познавательная готовность- развитость познавательных процессов: восприятия, внимания, воображения, памяти, мышления и речи.

Развитость восприятия проявляется в его избирательности, осмысленности, предметности и высоком уровне сформированности перцептивных действий.

Память также должна быть произвольной для того чтобы ребенок мог хорошо усваивать школьную программу.

Почти все дети, в этом возрасте обладают хорошо развитым и богатым воображением.

Интеллектуальная готовность к школьному обучению связана с развитием мыслительных процессов.

У ребенка должны быть определенная широта представлений, в том числе образных и пространственных.

Уровень развитости словесно-логического мышления должен позволять ребенку обобщать, сравнивать объекты, классифицировать их, выделять существенные признаки, определять причинно-следственные зависимости, делать выводы.

Речевая готовность детей к обучению проявляется в их умении пользоваться словом для произвольного управления поведением и познавательными процессами. Не менее важным является развитие речи как средства общения и предпосылки к усвоению письма.

Личностная готовность детей к обучению предполагает наличие у ребенка выраженного интереса к учению, к приобретению знаний, умений и навыков, к получению новой информации об окружающем мире. Готовым к школьному обучению является ребенок, которого школа привлекает не внешними атрибутами, а возможностью получать новые знания, что предполагает развитие познавательных интересов.

Социально-психологическая готовность–наличие у ребенка навыков социального общения, умений устанавливать взаимоотношения с другими детьми, умения войти в детское общество, уступать и защищаться. Ребенок должен уметь согласовывать свои действия со сверстниками, регулируя свои действия на основе усвоения общественных норм поведения.

У ребенка должны быть развиты коммуникативные черты характера: общительность, контактность, отзывчивость и покладистость, а также волевые черты личности: настойчивость, целеустремленность, упорство и др. Дети, готовые в этом плане к школьному обучению адекватно подчиняются школьным правилам, ведут себя на занятиях.

Эмоционально-волевую готовность считают сформированной, если ребенок умеет ставить цель, принимать решение, намечать план действия, прилагать усилия к его реализации, преодолевать препятствия.

Произвольность поведения проявляется в умении подчиняться правилам и требованиям взрослого, умении управлять собой, своим поведением. Этот компонент считается наиболее важным для психологической готовности дошкольников к школе.

Неподготовленность детей к обучению в школе, проявляется в импульсивных формах поведения, в неумении трудиться, в неадекватной реакции на трудности в учении, в неумении слушать и понимать учителя.

 



<== предыдущая лекция | следующая лекция ==>
Причины и последствия разногласий антигитлеровской коалиции | Александр 21 год - Марина 24 года
Поделиться с друзьями:


Дата добавления: 2016-12-31; Мы поможем в написании ваших работ!; просмотров: 469 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Логика может привести Вас от пункта А к пункту Б, а воображение — куда угодно © Альберт Эйнштейн
==> читать все изречения...

2257 - | 2186 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.015 с.