Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Тесла отвечает д-ру луису Дункану и объясняет действие мотора переменного тока 11 страница




 

В некоторых лампах, показанных на рисунке 28, маленькие трубки были выкрашены фосфоресцирующей краской и получались прекрасные световые эффекты. Вместо того чтобы увеличивать размер внутренней колбы и избежать преждевременного нагрева, целесообразно взять больший электрод т. Это ослабит бомбардировку по причине меньшей электрической плотности.

Много ламп было изготовлено по схеме, изображенной на рисунке 29. Здесь маленькая колба Ь, содержащая тугоплавкую головку т, после того как в ней создали вакуум, была закупорена в большой лампе L, из которой воздух был немного откачан. Она также закупорена. Принципиальное отличие этой конструкции в том, что она позволяет достичь высокой степени вакуума и в то же время использовать большую колбу. В процессе опытов, проводимых с такими лампами, выяснилось, что лучше всего делать ножку 5 возле пробки е очень толстой, а подводящий провод w тонким, так как случалось такое, что ножка в этом месте нагревалась и колба трескалась. Часто получалось так, что вакуума в большой колбе было достаточно лишь для того, чтобы проходил разряд, а пространство между колбами было малинового цвета, давая любопытные эффекты. В некоторых случаях, когда вакуум был небольшой и воздух хорошо проводил ток, чтобы сильно накалить головку т, желательно было в верхней части горловины колбы поместить жестяную фольгу, замкнутую на изолированный предмет, землю или другой вывод катушки, так как хорошо проводящий ток воздух немного ослаблял эффект, возможно, потому, что на него индуктивно действовал провод w там, где он входил в колбу в точке е. Еще одна трудность, которая, однако, всегда присутствует, когда тугоплавкую головку помещают в небольшую колбу, обнаружилась в конструкции, показанной на рисунке 29, а именно: вакуум в колбе Ь снижался за короткое время.

Основная идея обеих конструкций — сосредоточить тепло в центральной части лампы, прекратив циркуляцию воздуха. Этого удалось добиться, но вследствие нагрева внутренней колбы и постепенного испарения стекла трудно поддерживать вакуум, даже если выбрать конструкцию, помещенную на рисунке 28, где колбы сообщаются.

Но, конечно, идеальный путь — это достижение достаточно высокой частоты. Чем выше частота, тем медленнее воздухообмен и, я полагаю, можно достичь такой частоты, когда циркуляция совсем прекратится, независимо от того, сколько молекул воздуха окружают вывод. Тогда мы сможем получить пламя, при котором не будет потерь материала, и это будет странное пламя, так как оно будет твердым! При такой высокой частоте в игру вступит инерция частиц. Так как кисть, или пламя, получит твердость в силу инерции частиц, то их обмен прекратится. Это случится обязательно, так как с ростом числа импульсов уменьшается потенциал каждого из них, и в конце концов установятся только атомарные колебания, а передвижение сквозь измеримое пространство прекратится. Так, у обычной газовой горелки, соединенной с источником переменного потенциала можно повысить мощность до определенного уровня по двум причинам — за счет придания дополнительной вибрации, а также вследствие замедления процесса расхода материала. Но, поскольку обновление затруднится, а оно необходимо для поддержания горения, постоянный рост частоты импульсов, — если предположить, что они передаются напрямую пламени, — приведет к «гашению» его, при этом под данным термином мы понимаем прекращение химического процесса.

Я, однако, думаю, что в случае с электродом, помещенным в жидкую изолирующую среду и окруженным независимыми носителями зарядов, на которые он действует индуктивно, достаточно высокая "частота приведет к возникновению притяжения к электроду. Для этого только надо предположить, что независимые тела имеют неправильную форму; тогда они поворачиваются к электроду стороной, имеющей наибольшую электрическую плотность, а это то положение, при котором сопротивление, которое жидкость оказывает при приближении, меньше того, что она оказывает при отходе.

Нет сомнения, что общее мнение таково, что нет никакой возможности получить такие частоты, которые позволят — при допущении того, что некоторые из высказанных взглядов верны — прийти хотя бы к некоторым результатам из тех, что я только что обрисовал как возможные. В ходе исследований, наблюдая за этими явлениями, я пришел к убеждению, что эти частоты могут быть значительно ниже расчетных. В пламени мы вызываем небольшие колебания, заставляя молекулы или атомы сталкиваться. Но каков коэффициент этих столкновений и вызываемых вибраций? Конечно, он будет меньше коэффициента ударов колокола и звуковых вибраций или коэффициента разрядов и колебаний конденсатора. Мы можем заставить молекулы газа сталкиваться при помощи переменных электрических импульсов высокой частоты; также мы можем инициировать процесс в пламени; а из опытов с частотами, которые мы можем в настоящее время получать, я думаю, можно получить результат с импульсами, которые можно передать по проводу.

Рассуждая подобным образом, мне показалось интересным продемонстрировать твердость вибрирующего газового столба. Хотя с такой низкой частотой, как 10 000 колебаний в секунду, которую я без труда сумел получить от специально созданного генератора, задача сначала выглядела безнадежной, я всё же провел ряд опытов. Опыты с воздухом при обычном давлении не дали результатов, но когда я немного разредил воздух, мне кажется, получил несомненное опытное подтверждение искомого свойства. Так как такой результат может привести умелых экспериментаторов к важным выводам, я опишу один из опытов.

Хорошо известно, что когда из трубки немного откачан воздух, разряд может пройти в форме тонкой светящейся нити. Когда он вызывается током низкой частоты, полученным от катушки, работающей как обычно, эта нить инертна. Если поднести к ней магнит, то ближайшая ее часть притягивается или отталкивается, в зависимости от того, как направлены силовые линии магнита. Мне пришла мысль, что если такую нить получить от тока высокой частоты, то она должна быть более или менее твердой, а так как это можно увидеть, то можно и изучить. В соответствии с этим я приготовил трубку диаметром 1 дюйм и длиной 1 метр с покрытием на обоих концах. В трубке был создан вакуум до такой степени, что при небольшой нагрузке можно было получить нитевидный разряд. Надо сказать, что общий вид трубки и степень вакуумирования отличаются от того, какими они бывают при работе с обычными низкочастотными токами. Так как предпочтительнее работать с одним выводом, приготовленная трубка была подвешена на проводе, соединенном с одним выводом катушки через жестяное покрытие, к нижнему концу с покрытием иногда присоединялась изолированная пластина. Когда образовывалась нить, она тянулась через верхнюю часть трубки и терялась внизу. Если она обладала твердостью, то выглядела не как эластичный шнур, натянутый между двумя опорами, а как шнур, подвешенный на опоре с небольшим грузом на нижнем конце. Когда полюс магнита подносили к верхнему концу светящейся нити, она в этом месте меняла положение под магнитным или электростатическим воздействием; когда раздражитель быстро убирали, получался аналогичный результат, как будто подвешенный шнур оттянули, а потом быстро отпустили рядом с точкой подвешивания. При этом светящаяся нить начинала вибрировать и на ней образовывались два видимых и один неотчетливый узел. Вибрации продолжались полных восемь минут, постепенно затухая. Скорость колебаний часто ощутимо менялась, и можно было заметить электростатическое воздействие стекла на колеблющуюся нить; но было ясно, что электростатика не являлась причиной колебаний, ибо нить обычно была стабильна, а иногда колебания вызывались быстрым приближением пальца к верхней части трубки.

При помощи магнита нить можно было разбить на две части и обе вибрировали. Поднеся руку к нижней части трубки или к изолированной пластине можно было ускорить колебания; это можно было сделать, насколько я заметил, увеличив частоту и потенциал. Так, увеличение частоты или прохождение более сильного разряда той же частоты, соответствовало натяжению шнура. Я не получил опытного подтверждения при разрядах конденсатора. Световая полоса, возбуждаемая в трубке периодическими разрядами лейденской банки, должна обладать твердостью, и если ее деформировать и внезапно отпустить, должна вибрировать. Но, вероятно, количество вибрирующего вещества было настолько мало, что, несмотря на крайне высокую скорость, инерция не могла проявиться. Кроме того, наблюдение в таких случаях очень трудно производить по причине собственных колебаний.

Демонстрация того факта, который всё еще нуждается в экспериментальном подтверждении, что вибрирующий газовый столб имеет упругость, может сильно изменить взгляды мыслителей. Когда можно заметить это свойство при низких частотах и незначительном потенциале, то как же будет вести себя газообразная среда под воздействием огромного электростатического напряжения, которое может иметь место в межзвездном пространстве, и которое может колебаться с непостижимой скоростью? Существование такой электростатической, ритмично колеблющейся силы — электростатического поля — показало бы возможный путь формирования твердых веществ из ультрагазообразного правещества, а также как поперечные и другие типы колебаний могут передаваться сквозь газообразную среду, наполняющую всю Вселенную. Тогда эфир может быть настоящей жидкостью, лишенной упругости и находящейся в состоянии покоя, причем это необходимое звено в цепи взаимодействия. Что определяет упругость тела? Это должны быть скорость и количество движущегося вещества. В газах скорость может быть значительной, но плотность крайне мала; в жидкости скорость скорее всего мала, хотя плотность может быть значительной; и в обоих случаях инерционное сопротивление, оказываемое смещению, практически равно нулю. Но поместите столб газа (или жидкости) в напряженное, часто колеблющееся электростатическое поле, и инерционное сопротивление не заставит себя долго ждать. Тело может более или менее свободно двигаться сквозь вибрирующую массу, но в целом она будет упругой.

Есть тема, которой я должен коснуться в связи с этими опытами: высокий вакуум. Это предмет не только очень интересный, но и полезный, так как его изучение может привести к результатам огромной важности. В потребительских устройствах, таких, как лампы накаливания, которые питаются от обычных систем распределения, более высокая степень вакуумирования не принесет большой пользы. В таком случае вся нагрузка ложится на нить, а газ почти не причем; усовершенствование, следовательно, будет ничтожным. Но когда мы начинаем использовать очень высокие частоты и потенциалы, действие газа становится очень важным, и вакуум серьезно изменяет результаты. До тех пор, пока применялись обычные, даже очень большие катушки, изучение предмета было ограничено, так как именно в тот момент, когда это стало наиболее интересным, изучение прекратилось по причине того, что достигнут «неударный» вакуум. Но в настоящее время мы можем получить от разрядной катушки потенциалы гораздо более высокие, чем были способны дать самые большие катушки, и, что еще более важно, мы можем заставить потенциал меняться с огромной скоростью. Оба эти достижения позволяют нам пропускать световые разряды через вакуум любой степени, и поле наших исследований значительно расширилось. Я полагаю, что из всех возможных направлений разработки практичного осветительного прибора, направление высокого вакуума кажется наиболее многообещающим. Но для получения крайней степени вакуума приборы должны быть значительно усовершенствованы, и абсолютного совершенства мы не достигнем, пока не заменим механическую помпу усовершенствованной электрической. Молекулы и атомы могут быть вытеснены из лампы под воздействием огромного потенциала: таков будет принцип вакуумной помпы будущего. В настоящее же время мы должны получить наилучший результат механическими средствами. В этом плане не лишними окажутся несколько слов о методе и устройстве для получения крайне высокой степени вакуума, которые я создал в процессе моих исследований. Очень вероятно, что и другие исследователи могли пользоваться подобными установками, но так как, возможно, в описании этой будет нечто интересное, несколько замечаний, которые позволят обрисовать изыскания более полно, я всё же сделаю.

Устройство показано на рисунке 30. 5 — это насос Шпренгеля, который был изготовлен специально для этой работы. Запорный кран не использовался, а вместо него в горловину резервуара R был вмонтирован полый клапан 5. Этот клапан имеет небольшое отверстие h, через которое поступает ртуть; размер в ыxoднoгo отверстия о тщательно выверен и подогнан под сечение трубки r, которая припаяна к резервуару, а не соединена с ним обычным способом. В этом устройстве удалось избежать проблем и недостатков, которые часто возникают вследствие использования запорного крана на резервуаре и соединения последнего с вертикальной трубкой.

 

Помпа соединяется U-образной трубкой Т с большим резервуаром Rf. С особой тщательностью были пригнаны поверхности кранов р и рр обе они, а также ртутные чашки над ними сделаны особенно "длинными. После того, как U-образная трубка была пригнана и установлена на место, ее нагрели, чтобы снять напряжение неплотно пригнанных частей. U-образная трубка имеет запорный кран С и два отвода д и д1 один для маленькой колбы Ь, где находится едкое кали, а другой — для приемника r, где надо создать вакуум.

Резервуар R1 посредством резинового шланга соединяется с резервуаром R2 который немного больше, и оба они снабжены запорными кранами C1 и С2, соответственно. Резервуар R2, может при помощи штатива опускаться и подниматься таким образом, что, когда он заполнен ртутью и клапан С2 закрыт, так чтобы в поднятом положении в нем создавался вакуум Торричелли, его можно поднять так высоко, чтобы ртуть в резервуаре R1 поднялась выше запорного крана C1 а когда этот кран закрыт, а резервуар R2 внизу и вакуум Торричелли образуется в резервуаре R1 его можно было опустить так низко, чтобы ртуть полностью перетекла из резервуара R1 в резервуар R2 и встала чуть выше запорного крана С2

Емкость помпы и сочленений меньше соответственно вместимости резервуара R1, так как степень вакуума зависит от соотношения этих величин.

При помощи этого устройства я собрал воедино все средства производства высокого вакуума, применявшиеся в предыдущих опытах, в частности едкое кали. Позволю себе сказать касательно его использования: можно сэкономить значительное количество времени и усовершенствовать работу помпы, расплавив и доведя до кипения это вещество, как только, или даже раньше, чем помпа установится. Если этого не сделать, то едкое кали, как обычно при низких оборотах, может выделить влагу и помпа будет много часов работать, не давая высокого вакуума. Едкое кали я н агревал спиртовкой, попускал через него разряд или пропускал ток через провод, находящийся в нем. Преимущество последнего способа в том, что таким образом нагрев можно быстро повторить.

В целом процесс откачки воздуха выглядел так: вначале, когда запорные краны С и C1 открыты, а все остальные сочленения закрыты, резервуар R2 был поднят так высоко, что ртуть заполнила резервуар R1 и узкую часть U-образной трубки. Когда помпа начинала работать, ртуть, конечно, быстро поднималась в трубке, а резервуар R2, опускался, причем исследователь удерживал ртуть примерно на том же уровне. Резервуар R2 уравновешивался длинной пружиной, которая облегчала эту работу, а трения частей было до-статочно, чтобы удерживать его в любом положении. Когда насос Шпренгеля заканчивал свою работу, резервуар R2 опускался еще ниже и уровень ртути в R1 опускался и она заполняла R2, после чего клапан С2 закрывался. Воз-дух, прижатый к стенкам R1, и воздух, поглощенный ртутью, выпускался, и чтобы освободить ртуть от всего воздуха, резервуар R2 много раз опускался и поднимался. Во время этого процесса некоторое количество воздуха, которое собиралось под запорным краном С2, выгонялось из R2 путем опускания его достаточно низко и открывания крана; кран закрывался перед тем, как поднять сосуд. Когда весь воздух был удален из ртути и больше не скапливался в R2, его опускали и прибегали к помощи едкого кали. Теперь резервуар R2 был снова поднят, пока ртуть в R1 не устанавливалась выше крана С1 Поташ плавили и кипятили, и влага частично устранялась насосом, а частично реадсорбировалась; и этот процесс нагрева и охлаждения повторялся много раз, и каждый раз после того, как влага впитывалась или выгонялась, резервуар R2 много раз поднимали и опускали. Таким образом из ртути удалялась вся влага и оба резервуара были готовы к работе. Тогда резервуар R2 поднимался в верхнее положение и помпу включали на длительный срок. Когда достигалась наивысшая степень вакуума, колба с поташ ем оборачивалась хлопковой тканью, пропитанной эфиром, для того, чтобы держать ее при низкой температуре, затем резервуар R2 опускали и, после того как резервуар R1 опустел, приемник г быстро закупоривали.

Когда вставляли новую колбу, ртуть поднималась выше крана C1, который был закрыт для того, чтобы оба резервуара и ртуть находились в наилучшем состоянии, и ртуть никогда не удалялась из Rf, за исключением тех случаев, когда достигалась наивысшая степень откачки. Необходимо соблюдать это правило, чтобы устройство хорошо работало.

Применяя такую конструкцию, я работал очень быстро, а когда устройство было в абсолютном порядке, можно было получить флюоресценцию в небольшой колбе менее чем за 15 минут, что, конечно, очень быстро для небольшой лабораторной установки, которая потребляет примерно 100 фунтов ртути. При работе с небольшими колбами соотношение емкости насоса, приемника и сочленений и резервуара R было примерно 1-20, а уровень достигаемого вакуума обязательно очень высокий, хотя и не могу назвать точные цифры и уверенно сказать, насколько высок уровень.

Исследователя в процессе опытов более всего впечатляет поведение газов, подвергнутых воздействию высокочастотного электростатического напряжения. Но его не должно покидать сомнение: можно ли наблюдаемые эффекты отнести именно на счет молекул или атомов газа, чей химический анализ происходит перед ним, или в игру вступает другое газообразное вещество, имеющее в своем составе атомы или молекулы, погруженные в жидкость, заполняющую пространство. Такая среда обязательно должна существовать, и я убежден, что, например, даже при отсутствии воздуха поверхность и пространство вокруг предмета нагревались бы от быстро колеблющегося потенциала тела; но такого нагрева поверхности и окружающего пространства не может произойти при удалении всех свободных атомов, если бы осталась однородная, несжимаемая и эластичная жидкость — какой должен быть эфир, — ибо тогда не было бы ни ударов, ни столкновений. В таком случае, что касается самого тела, могут происходить только внутренние потери от трения.

Поразительным является то, что разряд сквозь газ проходит тем легче, чем больше частота импульсов. В этом случае его поведение диаметрально противоположное металлическому проводнику. В последнем случае с повышением частоты роль импеданса возрастает, но газ ведет себя скорее как цепь конденсаторов: возможность прохождения заряда через него, видимо, зависит от скорости изменения потенциала. Если это так, тогда в вакуумной трубке любой длины, неважно какова сила тока, самоиндукция будет ничтожно мала. Тогда мы имеем проводник в виде газа, способный передавать электрические импульсы любой частоты которую мы сможем получить. Если бы частоту удалось поднять до достаточно высокого уровня, тогда можно было бы реализовать любопытную систему распределения электроэнергии, которая заинтересовала бы газовые компании: металлические трубы, заполненные газом, где металл — это изолятор, а газ — проводник. Конечно, можно изготовить полый медный стержень, разрядить в нем газ, и пропуская импульсы достаточно высокой частоты через контур вокруг него, довести газ внутри до высокой степени накала; но что касается сил, то весьма сомнительно, будет ли при таких импульсах медный стержень действовать как статический экран. С такими парадоксами и очевидно невозможными ситуациями мы сталкиваемся на каждом шагу в нашей работе, и именно в них в большой степени и заключается основная привлекательность исследований.

Здесь у меня короткая широкая трубка, из которой откачан воздух, покрытая толстым слоем бронзы, не дающей свету поступать внутрь. Металлический зажим для подвешивания трубки укреплен посередине и касается трубки. Теперь я хочу зажечь газ внутри, подвесив трубку на проводе, соединенном с катушкой. Любой, кто проводит этот опыт впервые, скорее всего пожелает остаться в одиночестве, дабы не стать посмешищем для ассистентов. И всё же трубка освещается, несмотря на металлическое покрытие, и свет ясно виден сквозь него. Длинная трубка, покрытая алюминиевой бронзой, довольно ярко загорается, если ее держать в одной руке, а другой касаться вывода катушки. Мне могут возразить, что покрытия недостаточно хорошие проводники; однако, даже если они имели бы большое сопротивление, они должны экранировать газ. Конечно, они экранируют газ, находясь в состоянии покоя, но не так хорошо, когда на них волнообразно воздействуют. Потери энергии в трубке, несмотря на экран, происходят благодаря газу. Если бы мы взяли полый металлический шар и заполнили его абсолютно несжимаемым жидким диэлектриком, внутри шара не было бы потерь, и, соответственно, можно было бы сказать, что содержимое прекрасно экранировано, хотя потенциал и быстро меняется. Даже если шар заполнить маслом, потери всё равно были бы меньше в сравнении с газом, так как в последнем случае сила порождает смещения, а это означает удары и столкновения.

Неважно, под каким давлением находится газ, он становится важным фактором нагрева проводника, когда электрическая плотность велика, а частота высокая. То, что для нагрева проводника путем светящегося разряда воздух является очень важным элементом, так же точно, как экспериментально доказанный факт. Можно проиллюстрировать действие воздуха при помощи следующего опыта: я беру короткую трубку с небольшим вакуумом внутри, по центру которой от одного конца до другого проходит платиновый провод. По нему пропускаю постоянный или низкочастотный ток и он равномерно нагревается по всей длине. Нагрев происходит вследствие проводимости, или фрикционных потерь, а газ вокруг провода, как видим, не выполняет никакой функции. Но теперь позвольте мне пропустить прерывистые разряды или высокочастотный ток. И снова провод нагревается, но только в этот раз в основном на концах и меньше всего в середине; и если частота импульсов, или скорость изменения, достаточно высока, то провод можно даже перерезать посередине, так как весь нагрев происходит благодаря разреженному газу. Здесь газ может выступать только как проводник, не имеющий сопротивления, отводящий ток от провода, поскольку сопротивление последнего сильно возрастает, при этом лишь нагревая концы провода, так как они сопротивляются прохождению разряда. Но совсем необязательно, чтобы газ в трубке был проводником; давление его может быть крайне низким, и всё же концы провода нагреются, как доказано опытом, только в данном случае эти два конца не будут иметь электрического контакта через газообразную среду. Итак, то что происходит при высоких частотах и потенциалах в вакуумной трубке, происходит и при разряде молнии при обычном давлении. Нам необходимо лишь помнить об одном из фактов, которые мы обнаружили во время этих исследований, а именно: в ответ на высокочастотные импульсы газ при обычном давлении ведет себя так, как будто он разрежен. Я думаю, что во время разрядов молнии часто провода или предметы-проводники испаряются только из-за того, что присутствует воздух, и что если бы проводник был погружен в изолирующую жидкость, он был бы в безопасности, так как тогда энергия была бы потрачена где-то в другом месте. Исходя из поведения газов в ответ на внезапные импульсы высокого потенциала я склонен сделать вывод, что не может быть более верного пути отвода разряда молнии, чем дать ему пройти через некий объем газа, если только это можно практически осуществить.

 

Есть еще два свойства, на которых, я считаю, необходимо остановиться в связи с данными опытами, — «лучистое состояние» и «неударный вакуум».

Каждый, кто изучал труды Крукса, должен находиться под впечатлением, что «лучистое состояние» — это свойство газа, неотделимое от высокой степени вакуума. Но следует помнить, что явления, наблюдаемые в вакуумном сосуде, ограничены характером и емкостью применяемого устройства. Я думаю, что в колбе молекулы или атомы двигаются по совершенно прямой линии не потому, что не встречают препятствия, а потому, что скорость, переданная им, достаточна для того, чтобы двигаться по прямой. Средняя длина прямого пути — это одно, а скорость — количество энергии, связанное с движущимся телом, — совсем другое, и при обычных обстоятельствах, я полагаю, это всего лишь вопрос потенциала или скорости. Катушка с разрядником, когда потенциал очень высок, вызывает флюоресценцию и отбрасывает тени при сравнительно низком вакууме. При разряде молнии материя движется по прямой при нормальном давлении, когда средняя длина свободного пробега крайне мала, и часто изображения проводов или иных металлических предметов проецируются частицами, резко отброшенными по прямой линии.

Для того чтобы экспериментально продемонстрировать правильность приведенных высказываний, я приготовил лампу. В колбе L (рисунок 31) на нити накаливания f я укрепил кусочек извести i. Нить накаливания соединена с проводом, идущим в лампу, конструкция которой показана на рисунке 19. Когда лампа подключается к проводу, соединенному с выводом катушки, а последняя начинает работать, кусок извести i и выступающая часть нити f начинают подвергаться бомбардировке. Степень откачки воздуха такова, что потенциала катушки достаточно для начала флюоресценции, которая исчезает по мере ухудшения вакуума. Так как известь содержит влагу, которую отдает при нагревании, флюоресценция длится несколько мгновений. Когда известь достаточно нагрета, влаги отдается столько, сколько нужно, чтобы уничтожить вакуум. Так как бомбардировка продолжается, одна часть куска извести нагревается больше, чем другие, и в результате почти весь разряд проходит через эту точку, которая сильно нагревается, и белый поток частиц извести (рисунок 31) испускается из этой точки. Этот поток состоит из «лучистой материи», хотя уровень вакуума низкий. Частицы движутся по прямой, так как скорость, сообщенная им, велика, и это происходит по трем причинам — большой электрической плотности, высокой температуры небольшого участка, и того, что частицы извести легко отрываются и уносятся — гораздо легче частиц углерода. При тех частотах, которые мы можем получить, частицы ощутимо отрываются и отбрасываются на значительное расстояние, но при достаточно высоких частотах такого не произойдет: в этом случае будет распространятся только напряжение или через колбу будут передаваться вибрации. Нечего и говорить о том, чтобы достичь такой высоты, если предположить, что атомы движутся со скоростью света; но я полагаю, что такое невозможно — для этого потребуется огромный потенциал. При тех потенциалах, которые мы можем получить, даже от катушки с разрядником, скорость не должна быть важна.

Что касается «неударного вакуума» следует отметить, что он имеет место только при низкочастотных импульсах и является необходимым в силу невозможности отвода достаточного количества энергии такими импульсами в высоком вакууме, так как те немногие атомы, которые находятся рядом с выводом, вступая с ним в контакт, отталкиваются от него и держатся на расстоянии сравнительно долго, и поэтому не выполняется достаточно работы, чтобы эффект стал виден для глаза. Если разницу потенциалов на выводах поднять, то диэлектрик пробивается. Но при очень высокой частоте импульсов такого пробоя не произойдет, так как любое количество работы может быть выполнено путем постоянного возбуждения атомов в вакуумном сосуде. Нетрудно — даже при той частоте, которую мы получаем от нашего генератора, — достичь той стадии, когда разряд не проходит между двумя электродами в узкой трубке, причем каждый электрод соединен с выводом катушки, но трудно достичь того момента, когда световой разряд не формируется вокруг каждого электрода.

 

Естественно, в связи с высокочастотными токами возникает мысль, о том, чтобы использовать их мощную электродинамическую индукцию для получения световых эффектов в запаянной стеклянной колбе. Подводящий провод — один из недостатков современных ламп накаливания, и если не будут сделаны другие шаги вперед, то хотя бы от этого недостатка надо избавиться. И потому я провел несколько опытов в разных направлениях, некоторые из которых описал в своих прошлых публикациях. Здесь хочу упомянуть одно или два направления, в которых я двигался.

Много ламп было создано, как показано на рисунках 32, 33.

На рисунке 32 широкая трубка Т плотно соединена с меньшей по размеру W-образной трубкой U из фосфоресцентного стекла. В трубке Т располагается обмотка С из алюминиевого провода, на концах которого имеются маленькие алюминиевые шарики t и t', размещенные в трубке U. Трубка Т установлена в гнезде, содержащим первичную обмотку, через которую обычно пропускались разряды лейденских банок, а разреженный газ в маленькой трубке U возбуждался до яркого свечения токами высокого напряжения, наведенными в обмотке С. Когда, для того чтобы индуцировать токи в обмотке С, использовались разряды лейденской банки, выяснилось, что необходимо плотно набить трубку Т изолирующим порошком, так как между витками обмотки часто возникали разряды, особенно когда первичная обмотка толстая и промежуток, через который разряжались банки, большой — всё это доставило много хлопот.





Поделиться с друзьями:


Дата добавления: 2016-12-31; Мы поможем в написании ваших работ!; просмотров: 274 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Большинство людей упускают появившуюся возможность, потому что она бывает одета в комбинезон и с виду напоминает работу © Томас Эдисон
==> читать все изречения...

2530 - | 2189 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.