Постройте график функции и определите, при каких значениях k прямая имеет с графиком ровно одну общую точку.
Ответ: 81.
Комментарий.
График построен неверно – отсутствует выколотая точка. В соответствии с критериями – 0 баллов.
Оценка эксперта: 0 баллов.
Задача 24 (демонстрационный вариант 2016 г).
В прямоугольном треугольнике с прямым углом известны катеты: , . Найдите медиану этого треугольника.
Решение.
Ответ: 5.
Критерии оценки выполнения задания 24.
Баллы | Критерии оценки выполнения задания |
Получен верный обоснованный ответ | |
При верных рассуждениях допущена вычислительная ошибка, возможно приведшая к неверному ответу | |
Другие случаи, не соответствующие указанным критериям | |
Максимальный балл |
Задание 24 практически не менялось в течение нескольких лет. Критерии его оценивания сохранились.
Пример оценивания решения задания 24.
Высота, опущенная из вершины ромба, делит противоположную сторону на отрезки равные 24 и 2, считая от вершины острого угла. Вычислите длину высоты ромба.
Ответ: 10.
Комментарий.
Учащийся использует данные, которых нет в условии (считая острый угол ромба 60°).
Оценка эксперта: 0 баллов.
Задача 25 (демонстрационный вариант 2016 г).
В параллелограмме точка — середина стороны . Известно, что . Докажите, что данный параллелограмм — прямоугольник.
Доказательство. Треугольники и равны по трём сторонам.
Значит, углы и равны. Так как их сумма равна , то углы равны . Такой параллелограмм — прямоугольник.
Критерии оценки выполнения задания 25.
Баллы | Критерии оценки выполнения задания |
Доказательство верное, все шаги обоснованы | |
Доказательство в целом верное, но содержит неточности | |
Другие случаи, не соответствующие указанным критериям | |
Максимальный балл |
Пример оценивания решения задания 25.
Пример.
Две окружности с центрами E и F пересекаются в точках C и D, центры E и F лежат по одну сторону относительно прямой CD. Докажите, что прямая CD перпендикулярна прямой EF.
Комментарий.
Не доказано, что точка F лежит на высоте EK.
Оценка эксперта: 0 баллов.
Задача 26 (демонстрационный вариант 2016 г).
Основание равнобедренного треугольника равно 12. Окружность радиуса 8 с центром вне этого треугольника касается продолжений боковых сторон треугольника и касается основания . Найдите радиус окружности, вписанной в треугольник .
Решение.
Пусть — центр данной окружности,
а — центр окружности, вписанной в треугольник .
Точка касания окружностей делит пополам.
Лучи и — биссектрисы смежных углов, значит, угол прямой. Из прямоугольного треугольника получаем: . Следовательно,
Ответ: 4,5.