Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Изокванта. Карта изоквант. Свойства изоквант.




ЛЕКЦИЯ 5 ПРОИЗВОДСТВО

1.Производственная функция: определение, виды, свойства. Двухфакторная производственная функция. 1

2. Изокванта. Карта изоквант. Свойства изоквант. 3

3.Многообразие изоквант: линейная, прямоугольная, ломанная и их свойства. 4

4.Общий, средний и предельный продукты переменного ресурса. Сущность закона убывающей предельной производительности. 6

5.Производство с двумя переменными. Предельная норма технического замещения (MRTS). 8

6.Эффект от масштаба: постоянная, убывающая и возрастающая отдача от масштаба. 9

7.Изокоста и ее свойства. 10

8.Равновесие производителя. 11

 

1.Производственная функция: определение, виды, свойства. Двухфакторная производственная функция.

Теория производства и затрат является центральной в экономическом управлении фирмы.

Производство — важнейшая сфера деятельности фирмы, в которой создается продукция в результате использования производственных факторов. Обычно факторы производства подразделяют на четыре большие категории: труд, природные ресурсы, капитал, предпринимательство. В свою очередь каждая из категорий включает более мелкие группировки, например труд, как производственный фактор объединяет квалифицированный и неквалифицированный труд.

Взаимодействие между вводимыми факторами, производственным процессом и итоговым выходом продукции описывается производственной функцией. Производственная функция описывает технологическую взаимосвязь между объемом выпускаемой продукции и произведенными затратами факторов производства, а также зависимость между затратами. Будем считать, что выпуск Q произведен при использовании двух факторов производства — труда L и капитала K. В общем виде производственная функция имеет вид: , где — форма функции. Если независимыми переменными являются затраты, то производственную функцию называют функцией выпуска.

Связь между выпуском и затратами факторов соответствует одной конкретной технологии. В функции находит отражение максимальный объем конечного продукта. В действительности же при любой комбинации факторов можно получить несколько объемов выпуска в зависимости от эффективности организации производства.

Если используется факторов производства, то производственная функция записывается так: , где — затраты факторов производства. В функции не представлены экономические величины такие, как цены, заработная плата и другие.

Производственные функции обладают следующими свойствами. Так как факторы производства являются взаимодополняющими, то отсутствие хотя бы одного из них делает производство невозможным, поэтому . Это первое свойство. Свойство аддитивности отражает тот факт, что объединение двух групп факторов и позволяет выпустить по крайней мере такой же объем продукции, как и при раздельном их использовании: . Свойство делимости означает, что любой производственный процесс может осуществляться в сокращенных масштабах: . Данное положение не применимо на малых предприятиях, где производственная деятельность при уменьшающихся масштабах либо невозможна либо неэффективна.

Один и тот же выпуск можно получить при сочетаниях факторов , где — любое положительное число. Кривая, каждой точке которой соответствует одно из сочетаний факторов и выпуск , представляет собой график производственной функции и носит название изокванты.

Производственная функция имеет ряд особенностей или свойств:

1) факторы производства являются взаимодополняющими;

2) отсутствие одного из факторов делает производство невозможным;

3) производственная функция, использующаяся на макроуровне, именуется функцией Кобба-Дугласа:

Q = f (k*Ka*Lb), где

Q - максимальный объём выпуска продукции;

K - затраты капитала;

L – затраты труда;

a, b - эластичность выпуска по затратам соответствующих факторов (капитала и труда); k – коэффициент пропорциональности или масштабности в отрасли.

4) производственная функция непрерывна и не имеет ограничений по времени, а следовательно, свидетельствует о непрерывности производственного процесса.

 

Изокванта. Карта изоквант. Свойства изоквант.

 
 

Кривая, каждой точке которой соответствует одно из сочетаний факторов и выпуск , представляет собой график производственной функции и носит название изокванты.

Производственную функцию для различных объемов производства представляют семейством изоквант. Если , то изокванта лежит выше и правее , и ей соответствуют такие сочетания затрат производственных факторов, которые обеспечивают больший выпуск продукции. Если при переходе от выпуска к остается неизменной форма функции , то остается неизменным способ преобразования, эффективность преобразования затрат в продукцию. Для обозначения такого процесса применяется термин «эффективность технологии», которая в таком случае остается неизменной. Капиталоемкость технологии определяется коэффициентом капитал/труд , от которого зависит выпуск.

Чем больше капиталоемкость, тем больше выпуск.

Диапазон применения производственных функций широк. Они используются в теории фирмы в минимизации издержек, максимизации прибыли, измерении темпов экономического роста и технического прогресса, в изучении связей и зависимостей процесса производства.

Карта изоквант представляет собой набор изоквант, каждая из которых показывает максимальный объем выпуска продукции при использовании определенного сочетания факторов производства. Изокванта, которая лежит выше и правее любой другой обеспечивает больший выпуск продукции.

Рис. 2.6. Карта изоквант

К свойствам изоквант относят:

1) отрицательный наклон; 2) вогнутость к началу координат; 3) никогда не пересекаются; 4) показывают различные уровни производства. Чем дальше от начала координат расположена изокванта, тем больший объем выпуска продукции она показывает.

 

3.Многообразие изоквант: линейная, прямоугольная, ломанная и их свойства.

Самая простая производственная функция — линейная с идеально взаимозаменяемыми факторами производства имеет вид: , где , рис. а. Выпуск можно получить в крайних точках: при использовании только труда в точке или только капитала в точке . Замена одного фактора другим осуществляется в одной и той же пропорции. Предельная производительность труда и капитала постоянна и равна, соответственно, и .

В производственной функции с фиксированной структурой факторов (типа В.В. Леонтьева) используется одна технология, рис. б. Замещение одного фактора производства другим невозможно. Выпуск осуществляет в угловых точках изокванты.

Производственная функция Кобба-Дугласа была построена в 1928 году для обрабатывающей промышленности США за период 1899–1922 годы и носит имя ее авторов Ч. Кобба и П. Дугласа. Для двух факторов производства функция имеет вид: , где — постоянные, определяемые на основе наблюдаемых данных. Параметры функции можно экономически интерпретировать.

Так, характеризует эффективность применяемой технологии. Новейшая технология имеет высокую эффективность и обеспечивает больший выпуск по сравнению с ранее применявшейся технологией. Параметр представляет соотношение относительного изменения выпуска и относительного изменения затрат и показывает степень чуткости, степень реакции объема выпуска к изменению затрат труда, т.е. представляет частную эластичность выпуска по труду. Аналогично представляет частную эластичность выпуска по капиталу. Предельные продукты труда и капитала измеряются первыми частными производными функции: и . Так как , то объем выпуска возрастает ровно во столько раз, во сколько увеличиваются затраты труда и капитала. Функция характеризуется неизменной отдачей от масштаба.

В экономической теории технический прогресс измеряется четырьмя параметрами: эффективностью и капиталоемкостью технологии, эластичностью замены одного фактора производства другим и технологической отдачей от масштаба производства. Функция Кобба-Дугласа отражает только первые две характеристики технического прогресса и является частным случаем более общей функции с постоянной эластичностью замены факторов (ПЭЗ). Она была построена К.Д. Эрроу, Х. Чененри, Минхасом и Р. Солоу и имеет вид: , где — эффективность технологии, — капиталоемкость технологии, — эластичность замены одного фактора производства другим, — технологическая отдача от масштаба производства.

 





Поделиться с друзьями:


Дата добавления: 2016-12-18; Мы поможем в написании ваших работ!; просмотров: 1765 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Настоящая ответственность бывает только личной. © Фазиль Искандер
==> читать все изречения...

2310 - | 2034 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.