Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


История развития информатики.

 

Информатика - молодая научная дисциплина, изучающая вопросы, связанные с поиском, сбором, хранением, преобразованием и использованием информации в самых различных сферах человеческой деятельности. Генетически информатика связана с вычислительной техникой, компьютерными системами и сетями, так как именно компьютеры позволяют порождать, хранить и автоматически перерабатывать информацию в таких количествах, что научный подход к информационным процессам становится одновременно необходимым и возможным.

До настоящего времени толкование термина «информатика» (в том смысле как он используется в современной научной и методической литературе) еще не является установившимся и общепринятым. Обратимся к истории вопроса, восходящей ко времени появления электронных вычислительных машин.

После второй мировой войны возникла и начала бурно развиваться кибернетика как наука об общих закономерностях в управлении и связи в различных системах: искусственных, биологических, социальных. Рождение кибернетики принято связывать с опубликованием в 1948 г. американским математиком Норбертом Винером, ставшей знаменитой, книги «Кибернетика или управление и связь в животном и машине». В этой работе были показаны пути создания общей теории управления и заложены основы методов рассмотрения проблем управления и связи для различных систем с единой точки зрения. Развиваясь одновременно с развитием электронно-вычислительных машин, кибернетика со временем превращалась в более общую науку о преобразовании информации. Под информацией в кибернетике понимается любая совокупность сигналов, воздействий или сведений, которые некоторой системой воспринимаются от окружающей среды (входная информация X), выдаются в окружающую среду (выходная информация У), а также хранятся в себе (внутренняя, внутрисистемная информация Z), рис. 1.1.

Развитие кибернетики в нашей стране встретило идеологические препятствия. Как писал академик А.И.Берг, «... в 1955-57 гг. и даже позже в нашей литературе были допущены грубые ошибки в оценке значения и возможностей кибернетики. Это нанесло серьезный ущерб развитию науки в нашей стране, привело к задержке в разработке многих теоретических положений и даже самих электронных машин». Достаточно сказать, что еще в философском словаре 1959 года издания кибернетика характеризовалась как «буржуазная лженаука». Причиной этому послужили, с одной стороны, недооценка новой бурно развивающейся науки отдельными учеными «классического» направления, с другой - неумеренное пустословие тех, кто вместо активной разработки конкретных проблем кибернетики в различных областях спекулировал на полуфантастических прогнозах о безграничных возможностях кибернетики, дискредитируя тем самым эту науку.

 

 

Рис. 1.1. Общая схема обмена информацией между системой и внешней средой

 

Дело к тому же осложнялось тем, что развитие отечественной кибернетики на лротяжении многих лет сопровождалось серьезными трудностями в реализации крупных государственных проектов, например, создания автоматизированных систем управления (АСУ). Однако за это время удалось накопить значительный опыт создания информационных систем и систем управления технико-экономическими объектами. Требовалось выделить из кибернетики здоровее научное и техническое ядро и консолидировать силы для развития нового движения к давно уже стоящим глобальным целям.

Подойдем сейчас к этому вопросу с терминологической точки зрения. Вскоре вслед за появлением термина «кибернетика» в мировой науке стало использоваться англоязычное «Computer Science», а чуть позже, на рубеже шестидесятых и семидесятых годов, французы ввели получивший сейчас широкое распространение термин «Informatique». В русском языке раннее употребление термина «информатика» связано с узко-конкретной областью изучения структуры и общих свойств научной информации, передаваемой посредством научной литературы. Эта информационно-аналитическая деятельность, совершенно необходимая и сегодня в библиотечном деле, книгоиздании и т.д., уже давно не отражает современного понимания информатики. Как отмечал академик А.П.Ершов, в современных условиях термин информатика «вводится в русский язык в новом и куда более широком значении - как название фундаментальной естественной науки, изучающей процессы передачи и обработки информации. При таком толковании информатика оказывается более непосредственно связанной с философскими и общенаучными категориями, проясняется и ее место в кругу "традиционных" академических научных дисциплин».

Попытку определить, что же такое современная информатика, сделал в 1978 г. Международный конгресс по информатике: «Понятие информатики охватывает области, связанные с разработкой, созданием, использованием и материально-техническим обслуживанием систем обработки информации, включая машины, оборудование, математическое обеспечение, организационные аспекты, а также комплекс промышленного, коммерческого, административного и социального воздействия».

 

 

Введение в информатику

Информатика - это новая научная дисциплина и новая информа­ционная индустрия, связанные с использованием персональ­ных компьютеров и сетей ЭВМ. В новом тысячелетии предполагается, что основная информация, связанная с деятельностью людей будет храниться в памяти электронных вычислительных машин.

Информатика как научная дисциплина изучает законы, принципы и методы накопления, обработки и передачи информации с помощью ЭВМ. В этом смысле информатика как наука является фундаментом для развития новой информационной индустрии, основанной на использовании сетей ЭВМ.

Фундамент информатики образуют вычислительные науки - науки об вычислительных процессах и организации вычислительных машин, вычислительных систем и сетей. Основным объектом вычислитель­ных наук являются вычислительные машины - устройства для орга­низации вычислений и обработки символьной информации.

Обработка, накопление и передача информации происходит не только внутри ЭВМ. Передачу и накопление информации мы видим при общении людей, в технических устройствах, в живых организмах и в жизни общества, что тоже входит в предмет изучения информатики как научной дисциплины.

Передача информации в общении людей - это передача сведений и суждений, данных и сообщений. Даже улыбка является передачей информации при общении людей друг с другом. Любая совместная деятельность людей - работа, учеба и даже игра - построены на обмене и передаче информации.

Для живых существ восприятие и передача информации в форме сигналов - основное отличие от неодушевленных предметов окружающего мира. Языковая форма передачи знаковой информации - основное отличие людей от других живых существ.

Слово информация происходит от латинского informatio, означа­ющего сведения, разъяснения, пояснения. С содержательной точки зрения информация - это сведения о ком-то или о чем-то, а с фор­мальной точки зрения - набор знаков и сигналов.

С юридической точки зрения информация - это сведения о людях, предметах, фактах, событиях и процессах, независимо от формы их представления. Данное определение зафиксировано в Законе «Об информации, информатизации и защите информации», утвержден­ном в 1995 году.

Особую роль для общества играет документированная информация. Документы - это информация, зафиксированная на материальном носителе - бумаге или машинном носителе, имеющем реквизиты, позволяющие его идентифицировать.

Возможность записи информации в письменном виде - в форме последовательности знаков - привела к образованию государств, возникновению бюрократии и появлению почтовых служб. Парал­лельно это привело - к появлению грамотных людей - людей, уме­ющих читать, писать и искать информацию для решения различных проблем.

Возникновение письменности позволило людям не только переда­вать информацию, но и накапливать ее в форме записок, писем и рукописей в архивах, а также в личных и публичных библиотеках. Квалифицированная переработка информации потребовала людей, имеющих надлежащее образование.

Для обучения грамотности были открыты гимназии, лицеи и школы, а для подготовки образованных людей - университеты и колледжи, где накоплением и передачей знаний стали заниматься ученые, учи­теля и профессора.

Для хранения знаний стали использоваться рукописные книги, а для хранения книг - библиотеки и книгохранилища. В них стал накапливаться интеллектуальный потенциал общества и государств. Неслучайно одной из основных задач варвары считали уничтожение книг и книгохранилищ.

Изобретение печатных станков в XV в. создало технологическую основу для массового издания и распространения печатных книг. Это послужило основой для всеобщего распространения грамотности и открытия массовых начальных школ, в которых все дети обучались грамотности - умениям читать, писать и считать.

Развитие промышленного производства в XVIII-XIX веках потре­бовало большого числа специалистов, для подготовки которых было открыто большое число университетов. Это дало мощный толчок для развития естественных наук - химии, физики, механики, математики и подготовки инженерных кадров.

Развитие печатных станков привело к появлению и распростране­нию газет как средств массовой информации и информатизации общества, а также появлению и распространению журналов для распространения литературных произведений. В это же время появились первые законы, регулирующие авторские права.

Изобретение в XIX - начале XX века телеграфа, радио и телефона открыло новые возможности в передаче информации и информати­зации общества. Эти технические средства дали возможность прак­тически мгновенно передавать информацию на любые расстояния.

Следующим шагом технического прогресса стало появление и развитие электроники, телевидения и радиовещания к середине XX века. Изобретение телевидения позволило людям видеть на экранах телевизоров события, происходящие в самых различных точках планеты, а изобретение магнитофона - накапливать звуковую и видеоинформацию на магнитных носителях.

Точкой отсчета становления информатики как индустрии стало изобретение в середине XX века электронных вычислительных машин. Основной особенностью компьютеров стала возможность автоматической обработки информации. Переработка информации перестала быть исключительной способностью людей и живых существ.

Параллельно в середине XX века были заложены теоретические основы информатики как научной дисциплины. В этот период получи­ли развитие математическая логика - фундамент теоретической информатики и теория алгоритмов - фундамент вычислительных наук.

Компьютеры первого поколения создавались именно как электрон­ные вычислительные машины для автоматизации сложнейших вычислений оборонного и научного характера. Объем и сложность вычислений, выполнявшихся первыми компьютерами, были недо­ступны даже самым сильным математикам и вычислителям, но посильными для современных домашних компьютеров.

В этот период появились первые профессиональные программисты и первые теоретические работы по математической лингвистике, теории искусственного интеллекта и теоретическому программи­рованию. Бурное развитие получили вычислительная и дискретная математика, образующие математическую базу информатики и вы­числительных наук.

Компьютеры второго поколения создавались в качестве универ­сальных вычислительных машин, предназначенных для решения задач обработки и накопления информации с использованием устройств ввода и вывода. Компьютеры этого поколения стали использоваться для решения различных научных, экономических, оборонных и инженерных задач.

Для этих машин были созданы первые операционные системы, системы программирования и первые диалоговые системы. В этот период программирование зародилось как профессия и появились первые языки программирования и первые инструментальные про­граммы - компиляторы и интерпретаторы для ЭВМ.

Третье поколение компьютеров - это первые серийные вычисли­тельные машины для автоматизации обработки и накопления инфор­мации. Для этих ЭВМ был создан целый спектр устройств ввода, вывода и накопления информации. С помощью этих ЭВМ создава­лись первые экспериментальные вычислительные системы и сети.

Компьютеры третьего поколения стали широко использоваться в качестве технической базы для самых различных автоматизирован­ных систем - бухгалтерских и банковских систем, банков данных, систем автоматизации проектирования и производства и т. п. В это время появились первые администраторы баз данных и информаци­онные службы по эксплуатации автоматизированных систем.

Четвертое поколение - это компьютеры, создаваемые на базе серийных микропроцессоров. С этого поколения ЭВМ началось мас­совое производство и распространение персональных компьютеров, которые могут устанавливаться на любом рабочем столе - дома, на работе или в офисе.

Персональные ЭВМ широко используются для учебы, игры, напи­сания писем, книг и отчетов, ведения бухгалтерской документации и экономических расчетов, проведения научных и маркетинговых исследований, сочинения стихов и музыки, ведения переписки с коллегами и друзьями.

Применение компьютеров в жизни общества затрагивает условия деятельности и жизни миллионов людей. Современные персональ­ные компьютеры прежде всего открывают возможность выхода в сеть Интернет и оперативного поиска и получения различной инфор­мации в форме электронной почты, электронных журналов, газет и библиотек из самых различных стран и регионов, электронной коммерции - покупок и продаж по всему миру.

В серии ЭВМ четвертого поколения используются и более мощ­ные компьютеры, получившие название серверов - вычислительных машин с большим объемом памяти, используемых для постоянного хранения больших объемов информации. Именно такие серверы и используются в качестве узлов связи в вычислительных системах и сети Интернет.

Академик В.М. Глушков еще в начале 80-х годов писал, что «к началу следующего столетия в развитых странах основная масса информации будет храниться в памяти ЭВМ, а человек XXI века, который не будет уметь пользоваться ЭВМ, будет подобен человеку XX века, не умевшему ни читать, ни писать».

Обучение компьютерной грамотности - умениям работать с пер­сональными ЭВМ - является основной целью курса информатики в массовой школе. Современное понимание компьютерной грамот­ности предполагает не только умения читать, писать и считать с помощью персональных ЭВМ, но и умения искать и передавать информацию с помощью Интернет.

Целью вузовского курса информатики считается освоение профес­сионального использования персональных компьютеров и решения на ЭВМ профессиональных задач. Для развития этих умений необ­ходима определенная культура и развитие логического мышления.

Эффективное использование ЭВМ предполагает наличие инфор­мационной культуры - умений искать, передавать и подготавливать информацию в форме текстов и рисунков с помощью персональных компьютеров и сети Интернет. Развитие этой культуры ведет к более глубокому развитию логического мышления.

Логическое мышление проявляется в умении решать различные интеллектуальные задачи и в том числе в решении сложных задач с помощью ЭВМ. Эти интеллектуальные способности выражаются в умениях рассуждать, доказывать, ставить задачи, а также подбирать и обосновывать способы их решения.

Сложность изучения информатики как индустрии связана с ее беспрецендентной динамичностью - технические средства инфор­матики - компьютеры, программы и средства телекоммуникаций полностью модернизируются каждые пять-шесть лет, а соответству­ющие технические знания обновляются каждые два-три года. Одно­временно модернизируются компьютерные сети, архивы, библиотеки и информационные системы.

Подготовка и издание новой учебной литературы требует, как правило, от трех до пяти лет. Поэтому учебная литература не по­спевает за темпами обновления вычислительной техники. Угнаться за такими темпами обновления техники могут только электронные средства - электронная пресса, электронные справочники, элект­ронные учебники и технологии, связанные с использованием персо­нальных ЭВМ и сети Интернет.

В то же время информатика как научная дисциплина сохраняет свое ядро - общие принципы, законы и методы, организации вычис­лений и обработки информации с помощью ЭВМ. Эти принципы сохранят свою роль и значение для всех моделей и типов ЭВМ неза­висимо от их элементной базы, быстродействия и объемов памяти.

Более того общие законы информатики как общие законы интел­лектуальной деятельности сохраняют свою силу при изучении прин­ципов обработки, накопления и передачи информации не только в ЭВМ, но и в живых организмах и человеческом обществе.

 

 

  1. Информатика как единство науки и технологии.

Информатика - отнюдь не только «чистая наука». У нее, безусловно, имеется научное ядро, но важная особенность информатики - широчайшие приложения, охватывающие почти все виды человеческой деятельности: производство, управление, науку, образование, проектные разработки, торговлю, финансовую сферу, медицину, криминалистику, охрану окружающей среды и др. И, может быть, главное из них - совершенствование социального управления на основе новых информационных технологий.

Как наука, информатика изучает общие закономерности, свойственные информационным процессам (в самом широком смысле этого понятия). Когда разрабатываются новые носители информации, каналы связи, приемы кодирования, визуального отображения информации и многое другое, конкретная природа этой информации почти не имеет значения. Для разработчика системы управления базами данных (СУБД) важны общие принципы организации и эффективность поиска данных, а не то, какие конкретно данные будут затем заложены в базу многочисленными пользователями. Эти общие закономерности есть предмет информатики как науки.

Объектом приложений информатики являются самые различные науки и области практической деятельности, для которых она стала непрерывным источником самых современных технологий, называемых часто «новые информационные технологии» (НИТ). Многообразные информационные технологии, функциони. рующие в разных видах человеческой деятельности (управлении производственным процессом, проектировании, финансовых операциях, образовании и т.п.), имея общие черты, в то же время существенно различаются между собой.

Перечислим наиболее впечатляющие реализации информационных технологий, используя, ставшие традиционными, сокращения.

АСУ - автоматизированные системы управления - комплекс технических и программных средств, которые во взаимодействии с человеком организуют управление объектами в производстве или общественной сфере. Например, в образовании используются системы АСУ-ВУЗ.

АСУТП - автоматизированные системы управления технологическими процессами. Например, такая система управляет работой станка с числовым программным управлением (ЧПУ), процессом запуска космического аппарата и т.д.

АСНИ - автоматизированная система научных исследований - программно-аппаратный комплекс, в котором научные приборы сопряжены с компьютером, вводят в него данные измерений автоматически, а компьютер производит обработку этих данных и представление их в наиболее удобной для исследователя форме.

АОС - автоматизированная обучающая система. Есть системы, помогающие учащимся осваивать новый материал, производящие контроль знаний, помогающие преподавателям готовить учебные материалы и т.д.

САПР-система автоматизированного проектирования - программно-аппаратный комплекс, который во взаимодействии с человеком (конструктором, инженером-проектировщиком, архитектором и т.д.) позволяет максимально эффективно проектировать механизмы, здания, узлы сложных агрегатов и др.

Упомянем также диагностические системы в медицине, системы организации продажи билетов, системы ведения бухгалтерско-финансовой деятельности, системы обеспечения редакционно-издательской деятельности - спектр применения информационных технологий чрезвычайно широк.

С развитием информатики возникает вопрос о ее взаимосвязи и разграничении с кибернетикой. При этом требуется уточнение предмета кибернетики, более строгое его толкование. Информатика и кибернетика имеют много общего, основанного на концепции управления, но имеют и объективные различия. Один из подходов разграничения информатики и кибернетики - отнесение к области информатики исследований информационных технологий не в любых кибернетических системах (биологических, технических и т.д.), а только в социальных системах. В то время как за кибернетикой сохраняются исследования общих законов движения информации в произвольных системах, информатика, опираясь на этот теоретический фундамент, изучает конкретные способы и приемы переработки, передачи, использования информации. Впрочем, многим современным ученым такое разделение представляется искусственным, и они просто считают кибернетику одной из составных частей информатики.

 



<== предыдущая лекция | следующая лекция ==>
Правка, заменить, ввести искомое и слово для замены, кнопка заменить, ОК | 
Поделиться с друзьями:


Дата добавления: 2016-12-18; Мы поможем в написании ваших работ!; просмотров: 350 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Ваше время ограничено, не тратьте его, живя чужой жизнью © Стив Джобс
==> читать все изречения...

2245 - | 2190 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.014 с.