Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Построение таблицы значений функции




· Перейдем на новый рабочий лист.

· Зададим заголовки столбцов t, x, y.

· Заполним первый столбец значениями t, применив еще один способ задания аргумента: каждое последующее значение вычислим через предыдущее, добавляя шаг. В ячейке D2 вычислим по формуле =ПИ()/16. В ячейку A2 введем 0, в ячейку A3 введем формулу =A2+$D$2, которую копируем вниз до значения 2p.

· Введем в ячейку B2 формулу =COS(A2); в ячейку C2 формулу =SIN(A2)

· Выделим ячейки B2, C2 и копируем их для всех значений t с помощью заполнения.

· Форматируем таблицу по образцу.

 

Построение графика функции

· Выделим диапазон B1:C22

· Вызовем Мастер диаграмм и построим точечную диаграмму. В процессе построения зададим заголовки диаграммы и осей, уберем легенду, назначим линии сетки.

· Затем отредактируем диаграмму: по команде Ф ормат оси зададим точность – один знак после запятой, по команде Формат области построения укажем рамку Невидимая.

· Выполним растяжение-сжатие диаграммы, так чтобы получилась окружность, а не эллипс.

Результат построения показан на рис. 5.7.

 
 
Рис. 5.7. График функции, заданной параметрическими уравнениями

 
 


Замечания

 

1. Несколько изменив уравнения (1) можем получить и параметрические уравнения эллипса. Как работать с функциями, содержащими постоянные параметры, было рассмотрено в предыдущем примере. Итак, эллипс с осями a, b задается уравнениями:

где a, b - положительные константы

2. В примерах 1-3 были рассмотрены функции, заданные аналитически в явном виде, т.е. формулой, в которой зависимая переменная y вычислялась через независимую переменную x. Существует другой способ задания функции, в котором обе этих величины являются функциями одного и того же параметра t. Тогда каждому значению t соответствует пара значений (x, y), определяемых формулой

(2)

Предположим, что по каждому значению x=f(t) можно найти единственное значение t, которому в свою очередь можно сопоставить y=g(t). Тогда можно считать y функцией x. Такой способ задания функции называется параметрическим. Если рассматривать множество пар (x,y), определяемых уравнением (2) как множество точек на плоскости, то уже нет необходимости требовать единственности решения t по x. И в этом случае считаем, что задана функция y от x параметрическими уравнениями (2). Может оказаться, что одному значению x соответствует два или даже несколько значений y. В ряде случаев простые параметрические уравнения позволяют задать функции, для которых явные уравнения очень сложны или не существуют.

3. Функция, заданная в полярной системе координат, легко преобразуется к параметрической форме. Действительно, декартовы координаты x, y связаны с полярными координатами r, j уравнениями

 

(3)

 

Если задано уравнение кривой в полярной системе координат , то подставив это выражение в уравнения (3), получим параметрические уравнения кривой с полярным углом j в качестве параметра.

 





Поделиться с друзьями:


Дата добавления: 2016-12-17; Мы поможем в написании ваших работ!; просмотров: 336 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Свобода ничего не стоит, если она не включает в себя свободу ошибаться. © Махатма Ганди
==> читать все изречения...

2338 - | 2092 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.