Введение
Целью настоящих методических указаний является помощь студентам – заочникам в выполнении контрольной работы №3.
Перед выполнением контрольной работы студент должен изучить соответствующие разделы рекомендуемой литературы и воспользоваться решениями типовых примеров, содержащихся в настоящих методических указаниях.
Номер варианта по каждому заданию студент выбирает по формуле ,
где - номер варианта,
-номер задания,
-предпоследняя цифра шифра студента,
-последняя цифра шифра.
Пример.
Пусть шифр студента 1235, тогда:
номер варианта первого задания: = ;
номер варианта второго задания: ;
номер варианта третьего задания: ;
номер варианта четвертого задания: .
Таким образом, студент, имеющий шифр 1235 должен решать задачу №8 в первом задании, №11 – во втором, №14 – в третьем, №17 – в четвертом.
Если итоговая число по формуле получится больше 20, то для опред еле ния варианта от полученного числа отнимают 20.
Пример.
Пусть шифр студента 1298.
Номер варианта второго задания: . Промежуток 26-20=6. Таким образом, во втором задании студент решает задачу варианта №6.
Основная цель инженера – исследователя, изучающего какой- либо физический или технический процесс, заключается в выявлении его закономерностей, в получении аналитического выражения функциональной зависимости между переменными параметрами этого процесса.
Большинство подобных задач сводится к решению уравнений, содержащих производные или дифференциалы неизвестных функций.
Дифференциальные уравнения, их порядок, общий и частные интегралы
Дифференциальным уравнениемназывается равенство, содержащее производные или дифференциалы неизвестной функции.
Если неизвестная функция зависит только от одного аргумента, то дифференциальное уравнение называется обыкновенным, а если она зависит от нескольких аргументов и дифференциальное уравнение содержит ее частные производные по этим аргументам, то оно называется уравнением с частными производными.
Будем рассматривать обыкновенные дифференциальные уравнения.
Порядком дифференциального уравнения называется порядок высшей производной, содержащейся в этом уравнении.
Функция, удовлетворяющая дифференциальному уравнению, т.е. обращающая его в тождество, называется интегралом (решением) данного уравнения.
Интеграл дифференциального уравнения, называется общим, если он содержит столько независимых произвольных постоянных, каков порядокуравнения. А функции, получаемые из общего интеграла при различных числовых значениях произвольных постоянных, называются частными интегралами этого уравнения.
Отыскание частного интеграла дифференциального уравнения, удовлетворяющего начальным условиям, называется задачей Коши.