Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Интервальные оценки параметров распределения.




Характеристики вариационного ряда.


ЗАДАНИЕ N 29 сообщить об ошибке
Тема: Характеристики вариационного ряда
Размах варьирования вариационного ряда –1, 0, 2, 3, 4, 5, 7, 8, 10, 12, 14 равен …

 

     
       
       
       

 

Решение:
Размах варьирования вариационного ряда определяется как то есть

 

ЗАДАНИЕ N 12 сообщить об ошибке
Тема: Характеристики вариационного ряда
Размах варьирования вариационного ряда 2, 3, 4, 5, 5, 7, 9, 10, 12, 14, x 11 равен 15. Тогда значение x 11 равно …

 

     
       
       
       

 

Решение:
Размах варьирования вариационного ряда определяется как то есть и


ЗАДАНИЕ N 2 сообщить об ошибке
Тема: Характеристики вариационного ряда
Медиана вариационного ряда 5, 7, 9, 12, 12, 15, 16, 17, 18, 19, 21 равна …

 

     
       
       
       

 

Решение:
Медианой вариационного ряда называется значение признака генеральной совокупности, приходящееся на середину вариационного ряда. В данном случае это варианта, расположенная в середине вариационного ряда. В середине данного ряда располагается варианта 15.

 

ЗАДАНИЕ N 19 сообщить об ошибке
Тема: Характеристики вариационного ряда
Медиана равна 8 для вариационного ряда …

 

    1, 3, 6, 7, 8, 9, 10, 12, 15
      1, 2, 4, 5, 6, 8
      8, 8, 10, 11, 13, 14, 16
      1, 3, 6, 7, 8, 9, 10, 12

 

Решение:
Медианой вариационного ряда называется значение признака генеральной совокупности, приходящееся на середину вариационного ряда. В данном случае медиана равна 8 для ряда 1, 3, 6, 7, 8, 9, 10, 12, 15, так как в середине данного ряда располагается варианта 8.


ЗАДАНИЕ N 26 сообщить об ошибке
Тема: Характеристики вариационного ряда
Медиана вариационного ряда 2, 3, 5, 6, 7, 9, x 7, 12, 13, 15, 16, 18 равна 10. Тогда значение варианты x 7 равно …

 

     
       
       
       

 

Решение:
Медианой вариационного ряда называется значение признака генеральной совокупности, приходящееся на середину вариационного ряда. Так как в середине ряда располагаются две варианты: 9 и x 7, то медиана равна их средней арифметической, то есть Тогда


ЗАДАНИЕ N 9 сообщить об ошибке
Тема: Характеристики вариационного ряда
Мода вариационного ряда 2, 4, 5, 7, 7, 7, 9, 9, 11, 12 равна …

 

     
       
       
       

 

Решение:
Модой вариационного ряда называется варианта, имеющая наибольшую частоту. Такой вариантой является варианта 7, частота которой равна трем.


ЗАДАНИЕ N 32 сообщить об ошибке
Тема: Характеристики вариационного ряда
Мода равна 6 для вариационного ряда …

 

    3, 4, 6, 6, 6, 7, 7, 8, 10, 10
      2, 4, 5, 6, 8, 8, 9
      6, 6, 7, 8, 9, 9, 9, 10, 12
      1, 2, 2, 3, 5, 6, 8

 

Решение:
Модой вариационного ряда называется варианта, имеющая наибольшую частоту. В данном случае мода равна 6 для вариационного ряда 3, 4, 6, 6, 6, 7, 7, 8, 10, 10, так как частота варианты 6 равна трем.

 

Интервальные оценки параметров распределения.


ЗАДАНИЕ N 35 сообщить об ошибке
Тема: Интервальные оценки параметров распределения
Точечная оценка математического ожидания нормально распределенного количественного признака равна 0,4. Тогда его интервальная оценка может иметь вид …

 

   
     
     
     

 

Решение:
Интервальная оценка математического ожидания нормально распределенного количественного признака симметрична относительно его точечной оценки. Таким свойством обладает интервал


ЗАДАНИЕ N 20 сообщить об ошибке
Тема: Интервальные оценки параметров распределения
Точечная оценка математического ожидания нормально распределенного количественного признака равна 12,04. Тогда его интервальная оценка с точностью 1,66 имеет вид …

 

    (10,38; 13,70)
      (0; 13,70)
      (11,21; 12,87)
      (10,38; 12,04)

 

Решение:
Доверительный интервал для оценки математического ожидания нормально распределенного количественного признака можно представить в виде симметричного интервала где точечная оценка математического ожидания а точность оценки
Следовательно, интервальная оценка будет иметь вид (10,38; 13,70).

 

ЗАДАНИЕ N 12 сообщить об ошибке
Тема: Интервальные оценки параметров распределения
Точечная оценка вероятности биномиально распределенного количественного признака равна 0,38. Тогда его интервальная оценка может иметь вид …

 

    (0,25; 0,51)
      (–0,05; 0,81)
      (0,38; 0,51)
      (0,29; 0,49)

 

Решение:
Интервальная оценка вероятности биномиально распределенного количественного признака симметрична относительно его точечной оценки, и . Таким свойствам удовлетворяет интервал


ЗАДАНИЕ N 5 сообщить об ошибке
Тема: Интервальные оценки параметров распределения
Дан доверительный интервал (25,44; 26,98) для оценки математического ожидания нормально распределенного количественного признака. Тогда при увеличении надежности (доверительной вероятности) оценки доверительный интервал может принять вид …

 

    (24,04; 28,38)
      (25,74; 26,68)
      (24,04; 26,98)
      (24,14; 28,38)

 

Решение:
Доверительный интервал для оценки математического ожидания нормально распределенного количественного признака можно представить в виде симметричного интервала где точечная оценка математического ожидания а точность оценки В случае увеличения надежности точность оценки ухудшается, то есть значение будет больше 0,77.


ЗАДАНИЕ N 23 сообщить об ошибке
Тема: Интервальные оценки параметров распределения
Дан доверительный интервал (–0,28; 1,42) для оценки математического ожидания нормально распределенного количественного признака. Тогда при уменьшении надежности (доверительной вероятности) оценки доверительный интервал может принять вид …

 

    (–0,14; 1,28)
      (–0,37; 1,51)
      (–0,14; 1,42)
      (0; 1,42)

 

Решение:
Доверительный интервал для оценки математического ожидания нормально распределенного количественного признака можно представить в виде симметричного интервала где точечная оценка математического ожидания а точность оценки В случае уменьшения надежности точность оценки улучшается, то есть значение будет меньше 0,85.


ЗАДАНИЕ N 10 сообщить об ошибке
Тема: Интервальные оценки параметров распределения
Дан доверительный интервал (24,6;26,8) для оценки математического ожидания нормально распределенного количественного признака при известном среднем квадратическом отклонении генеральной совокупности. Тогда при уменьшении объема выборки в четыре раза этот доверительный интервал примет вид …

 

    (23,5;27,9)
      (21,3; 30,1)
      (25,15; 26,25)
      (23,3;28,1)

 

Решение:
Доверительный интервал для оценки математического ожидания нормально распределенного количественного признака можно представить в виде симметричного интервала где – точечная оценка математического ожидания, – точность оценки, – объем выборки, – значение аргумента функции Лапласа при котором – надежность оценки.
Для данной интервальной оценки вычислим и В случае уменьшения объема выборки в четыре раза значение точности оценки увеличится в раза, то есть значение будет равно 2,2.
Тогда интервальная оценка примет вид (25,7 – 2,2; 25,7 + 2,2), или (23,5; 27,9).


ЗАДАНИЕ N 35 сообщить об ошибке
Тема: Интервальные оценки параметров распределения
Построен доверительный интервал для оценки математического ожидания нормально распределенного количественного признака при известном среднем квадратическом отклонении генеральной совокупности. Тогда при уменьшении объема выборки в два раза значение точности этой оценки …

 

    увеличится в раз
      уменьшится в два раза
      увеличится в два раза
      уменьшится в раз

 

Решение:
Доверительный интервал для оценки математического ожидания нормально распределенного количественного признака можно представить в виде симметричного интервала где – точечная оценка математического ожидания, – точность оценки, – объем выборки, – значение аргумента функции Лапласа , при котором , – надежность оценки.
Тогда в случае уменьшения объема выборки в два раза значение точности оценки увеличится в раз.

 

ЗАДАНИЕ N 4 сообщить об ошибке
Тема: Интервальные оценки параметров распределения
Построен доверительный интервал для оценки математического ожидания нормально распределенного количественного признака при известном среднем квадратическом отклонении генеральной совокупности. Тогда при увеличении объема выборки в девять раз значение точности этой оценки …

 

    уменьшится в три раза
      уменьшится в девять раз
      увеличится в девять раз
      увеличится в три раза

 

 





Поделиться с друзьями:


Дата добавления: 2016-12-18; Мы поможем в написании ваших работ!; просмотров: 736 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Своим успехом я обязана тому, что никогда не оправдывалась и не принимала оправданий от других. © Флоренс Найтингейл
==> читать все изречения...

2376 - | 2185 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.013 с.