Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Эквивалентность бесконечно малых. Основные эквивалентности.




Таблица эквивалентных бесконечно малых при

Пределы отношения бесконечно малых можно упрощать, откидывая бесконечно малые слагаемые большего порядка и заменяя множители в числителе и знаменателе на эквивалентные бесконечно малые. Для того, чтобы этот способ вычисления пределов (точнее, раскрытия неопределённостей вида ) можно было применять к возможно большему числу примеров, мы должны иметь достаточно большой запас известных пар эквивалентных бесконечно малых величин. Для наиболее употребительной базы создадим такой запас в виде таблицы "стандартных" эквивалентных бесконечно малых.

Поскольку в этой таблице мы всегда будем рассматривать базу , для простоты записи обозначение этой базы будем пропускать и писать знак вместо .

1) . Эту формулу мы уже доказали и использовали в примерах. Эквивалентность и при означает в точности, что первый замечательный предел равен 1.

2) . Эта эквивалентность тоже была доказана выше в одном из примеров.

3) . Докажем эту эквивалентность:

4) . Докажите это в качестве упражнения, сделав замену и применив предыдущую табличную формулу.

5) . Для доказательства воспользуемся формулой . Далее, имеем:


Это означает, что доказываемая эквивалентность имеет место.

6) (). Для доказательства этой эквивалентности сделаем такое преобразование:


Для вычисления предела правой части воспользуемся непрерывностью логарифма и вторым замечательным пределом:

и мы доказали формулу 6.

В частном случае, при , получаем эквивалентность

) .

7) (). Для доказательства сделаем замену и выразим через : . Согласно формуле 6, при , откуда . Из непрерывности логарифма следует, что и, значит, при . В этой формуле осталось лишь сменить обозначение переменного на , чтобы получить формулу 7.

В частном случае, при , получаем эквивалентность

) .

Сведём теперь полученные формулы в итоговую таблицу. Всюду в ней .

1) .
2) .
3) .
4) .
5) .
6) ().
) .
7) ().
) .

Приведём примеры применения табличных формул для раскрытия неопределённостей вида .

Пример 2.37 Вычислим предел . Для этого в числителе вынесем за скобку , а к знаменателю применим формулу , где , . Получим


Мы заменили на эквивалентную величину (учтя при этом, что при ), на эквивалентную величину (учтя, что при ), затем сократили числитель и знаменатель на и, наконец, воспользовались тем, что функции и непрерывны и что и .

Пример 2.38 Вычислим предел

Заменим в числителе на эквивалентную величину , а знаменатель -- на эквивалентную величину . После этого можно будет сократить дробь на и получить ответ:

 

Ещё раз обратим внимание читателя, что все формулы таблицы эквивалентных бесконечно малых относятся к базе . Следовательно, те же эквивалентности имеют место и при односторонних базах и . Если же рассматриваемый пример содержит неопределённость вида при какой-либо другой базе, то часто предел можно свести к пределу при "стандартной" базе (или , или ) с помощью подходящей замены переменной, а затем воспользоваться табличными эквивалентностями.

Пример 2.39 Вычислим предел .

Если сделать замену , то при новая переменная будет, очевидно, стремиться к 0, то есть база перейдёт при такой замене в "стандартную" базу . Подставляя и учитывая формулу приведения для косинуса, получаем:

Мы применили табличную формулу , а затем сократили дробь на и получили ответ.

Применяя формулы таблицы эквивалентностей бесконечно малых последовательно, мы можем получать (и использовать для вычисления пределов) цепочки эквивалентностей произвольной длины.

Пример 2.40 Можно, например, получить следующую формулу:


Здесь мы последовательно воспользовались формулами

и учли, что величины , , , являются бесконечно малыми при .

Используя полученную в результате эквивалентность





Поделиться с друзьями:


Дата добавления: 2016-12-18; Мы поможем в написании ваших работ!; просмотров: 821 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Лаской почти всегда добьешься больше, чем грубой силой. © Неизвестно
==> читать все изречения...

2390 - | 2260 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.