Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Уравнение гармонических колебаний

Основы теории Максвелла для электромагнитного поля

Вихревое электрическое поле

Из закона Фарадея ξ=dФ/dt следует, что любое изменение сцепленного с контуром потока магнитной индукции приводит к возникновению элек­тродвижущей силы индукции и вследствие этого появляется индукционный ток. Сле­довательно, возникновение э.д.с. электро­магнитной индукции возможно и в непод­вижном контуре, находящемся в перемен­ном магнитном поле. Однако э.д.с. в любой цепи возникает только тогда, когда в ней на носители тока действуют сторонние силы — силы неэлектростатического про­исхождения (см. § 97). Поэтому возника­ет вопрос о природе сторонних сил в дан­ном случае.

Опыт показывает, что эти сторонние силы не связаны ни с тепловыми, ни с хи­мическими процессами в контуре; их воз­никновение также нельзя объяснить сила­ми Лоренца, так как они на неподвижные заряды не действуют. Максвелл высказал гипотезу, что всякое переменное магнит­ное поле возбуждает в окружающем про­странстве электрическое поле, которое

и является причиной возникновения ин­дукционного тока в контуре. Согласно представлениям Максвелла, контур, в ко­тором появляется э.д.с., играет второсте­пенную роль, являясь своего рода лишь «прибором», обнаруживающим это поле.

 

первое уравнение Максвелла утверждает, что изменения электрического поля порождают вихревое магнитное поле.


Второе уравнен ие Максвелла выражает закон электромагнитной индукции Фарадея: ЭДС в любом замкнутом контуре равна скорости изменения (т. е. производной по времени) магнитного потока. Но ЭДС равна касательной составляющей вектора напряженности электрического поля Е, помноженной на длину контура. Чтобы перейти к ротору, как и в первом уравнении Максвелла, достаточно разделить ЭДС на площадь контура, а последнюю устремить к нулю, т. е. взять маленький контур, охватывающий рассматриваемую точку пространства (рис. 9,в). Тогда в правой части уравнения будет уже не поток, а магнитная индукция, поскольку поток равен индукции, помноженной на площадь контура.
Итак, получаем: rotE = - dB/dt.
Таким образом, вихревое электрическое поле порождается изменениями магнитного, что и подано на рис. 9,в и представлено только что приведенной формулой.
Третье и четвертое уравнения Максвелла имеют дело с зарядами и порождаемыми ими полями. Они основаны на теореме Гаусса, утверждающей, что поток вектора электрической индукции через любую замкнутую поверхность равен заряду внутри этой поверхности.


На уравнениях Максвелла основана целая наука - электродинамика, позволяющая строгими математическими методами решить множество полезных практических задач. Можно рассчитать, например, поле излучения различных антенн как в свободном пространстве, так и вблизи поверхности Земли или около корпуса какого-либо летательного аппарата, например, самолета или ракеты. Электродинамика позволяет рассчитать конструкцию волноводов и объемных резонаторов - устройств, применяющихся на очень высоких частотах сантиметрового и миллиметрового диапазонов волн, где обычные линии передачи и колебательные контуры уже непригодны. Без электродинамики невозможно было бы развитие радиолокации, космической радиосвязи, антенной техники и многих других разделов современной радиотехники.

 

Ток смещения

ТОК СМЕЩЕ́НИЯ, величина, пропорциональная скорости изменения переменного электрического поля в диэлектрике или вакууме. Название «ток» связано с тем, что ток смещения, так же как и ток проводимости, порождает магнитное поле.

При построении теории электромагнитного поля Дж. К. Максвелл выдвинул гипотезу (впоследствии подтвержденную на опыте) о том, что магнитное поле создается не только движением зарядов (током проводимости, или просто током), но и любым изменением во времени электрического поля.

Понятие ток смещения введено Максвеллом для установления количественных соотношений между изменяющимся электрическим полем и вызываемым им магнитным полем.

В соответствии с теорией Максвелла, в цепи переменного тока, содержащей конденсатор, переменное электрическое поле в конденсаторе в каждый момент времени создает такое магнитное поле, какое создавал бы ток, (названный током смещения), если бы он протекал между обкладками конденсатора. Из этого определения следует, что Jсм = J (т. е., численные значения плотности тока проводимости и плотности тока смещения равны), и, следовательно, линии плотности тока проводимости внутри проводника непрерывно переходят в линии плотности тока смещения между обкладками конденсатора. Плотность тока смещения jсм характеризует скорость изменения электрической индукции D во времени:

Jсм = +?D/?t.

Ток смещения не выделяет джоулевой теплоты, его основное физическое свойство — способность создавать в окружающем пространстве магнитное поле.

Вихревое магнитное поле создается полным током, плотность которого j, равна сумме плотности тока проводимости и тока смещения?D/?t. Именно поэтому для величины?D/?t и было введено название ток.

 

23.

Гармоническим осциллятором называется система, которая совершает колебания, описываемые выражением вида d2s/dt2 + ω02s = 0 или

(1)

где две точки сверху означают двукратное дифференцирование по времени. Колебания гармонического осциллятора есть важный пример периодического движения и служат точной или приближенной моделью во многих задачах классической и квантовой физики. В качестве примеров гармонического осциллятора могут быть пружинный, физический и математический маятники, колебательный контур (для токов и напряжений настолько малых, что можно было бы элементы контура считать линейными).

Гармонические колебания

Наряду с поступательными и вращательными движениями тел в механике значительный интерес представляют и колебательные движения. Механическими колебанияминазывают движения тел, повторяющиеся точно (или приблизительно) через одинаковые промежутки времени. Закон движения тела, совершающего колебания, задается с помощью некоторой периодической функции времени x = f (t). Графическое изображение этой функции дает наглядное представление о протекании колебательного процесса во времени.

Примерами простых колебательных систем могут служить груз на пружине или математический маятник (рис. 2.1.1).

Рисунок 2.1.1. Механические колебательные системы

Механические колебания, как и колебательные процессы любой другой физической природы, могут быть свободными и вынужденными. Свободные колебания совершаются под действием внутренних сил системы, после того, как система была выведена из состояния равновесия. Колебания груза на пружине или колебания маятника являются свободными колебаниями. Колебания, происходящие под действием внешних периодически изменяющихся сил, называются вынужденными Простейшим видом колебательного процесса являются простые гармонические колебания, которые описываются уравнением

x = x m cos (ω t + φ0).

Здесь x – смещение тела от положения равновесия, x m – амплитуда колебаний, т. е. максимальное смещение от положения равновесия, ω – циклическая или круговая частотаколебаний, t – время. Величина, стоящая под знаком косинуса φ = ω t + φ0 называется фазой гармонического процесса. При t = 0 φ = φ0, поэтому φ0 называют начальной фазой. Минимальный интервал времени, через который происходит повторение движения тела, называется периодом колебаний T. Физическая величина, обратная периоду колебаний, называется частотой колебаний:

Частота колебаний f показывает, сколько колебаний совершается за 1 с. Единица частоты – герц (Гц). Частота колебаний f связана с циклической частотой ω и периодом колебаний T соотношениями:

Уравнение гармонических колебаний

Уравнение (1)

дает зависимость колеблющейся величины S от времени t; это и есть уравнение свободных гармонических колебаний в явном виде. Однако обычно под уравнением колебаний понимают иную запись этого уравнения, в дифференциальной форме. Возьмем для определенности уравнение (1) в виде

дважды продифференцируем его по времени:

Видно, что выполняется следующее соотношение:

(2)

которое и называется уравнением свободных гармонических колебаний (в дифференциальной форме). Уравнение (1) является решением дифференциального уравнения (2). Поскольку уравнение (2) - дифференциальное уравнение второго порядка, необходимы два начальных условия для получения полного решения (то есть определения входящих в уравнение (1) констант A и j0); например, положение и скорость колебательной системы при t = 0.

 

 

24.

Сложение гармонических колебаний одного направления и одинаковой частоты. Биения

Пусть совершаются два гармонических колебания одного направления и одинаковой частоты

(4.1)

Уравнение результирующего колебания будет иметь вид

Убедимся в этом, сложив уравнения системы (4.1)

Применив теорему косинусов суммы и сделав алгебраические преобразования:

(4.2)

Можно найти такие величины А и φ0, чтобы удовлетворялись уравнения

(4.3)

Рассматривая (4.3) как два уравнения с двумя неизвестными А и φ0, найдем, возведя их в квадрат и сложив, а затем разделив второе на первое:

Подставляя (4.3) в (4.2), получим:

Или окончательно, используя теорему косинусов суммы, имеем:

Тело, участвуя в двух гармонических колебаниях одного направления и одинаковой частоты, совершает также гармоническое колебание в том же направлении и с той же частотой, что и складываемые колебания. Амплитуда результирующего колебания зависит от разности фаз (φ2-φ1) сгладываемых колебаний.

В зависимости от разности фаз (φ2-φ1):

1) (φ2-φ1) = ±2mπ (m=0, 1, 2, …), тогда A= А1+А2, т. е. амплитуда результирующего колебания А равна сумме амплитуд складываемых колебаний;

2) (φ2-φ1) = ±(2m+1)π (m=0, 1, 2, …), тогда A= |А1-А2|, т. е. амплитуда результирующего колебания равна разности амплитуд складываемых колебаний

 

Периодические изменения амплитуды колебания, возникающие при сложении двух гармонических колебаний с близкими частотами, называются биением.

Пусть два колебания мало отличаются по частоте. Тогда амплитуды складываемых колебаний равны А, а частоты равны ω и ω+Δω, причем Δω намного меньше ω. Начало отсчета выберем так, чтобы начальные фазы обоих колебаний были равны нулю:

Решим систему

Решение системы:

Результирующее колебание можно рассматривать как гармоническое с частотой ω, амплитуда А, которого изменяется по следующему периодическому закону:

Частота изменения А в два раза больше частоты изменения косинуса. Частота биений равна разности частот складываемых колебаний: ωб = Δω

Период биений:

Определение частоты тона (звука определенной высоты биений эталонным и измеряемым колебаниями — наиболее широко применяемый на метод сравнения измеряемой величины с эталонной. Метод биений используется для настройки музыкальных инструментов, анализа слуха и т. д.

 



<== предыдущая лекция | следующая лекция ==>
При возрастании скорости множитель | Первое начало термодинамики. Понятие теплоемкости
Поделиться с друзьями:


Дата добавления: 2016-12-18; Мы поможем в написании ваших работ!; просмотров: 834 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Ваше время ограничено, не тратьте его, живя чужой жизнью © Стив Джобс
==> читать все изречения...

2196 - | 2137 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.