Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Лабораторная работа № 25, 27, 30




1. Гармонические колебания (уравнение, частота колебаний, амплитуда, начальная фаза, фаза колебаний).

 

гармонические колебания — колебания, при которых колеб­лющаяся величина изменяется со временем по закону синуса (косинуса).

А — максимальное значение колеблющейся величины, называемое амплитудой колебания, w 0круговая (циклическая) частота, j — начальная фаза колебания в мо­мент времени t= 0, (w 0 t + j) — фаза колебания в момент времени t.

число полных колебаний, совершаемых в единицу времени, называется частотой колебаний.

 

 

2. Дифференциальное уравнение гармонических колебаний.

 

 

3. Сила, действующая на материальную точку.

 

Сила F=ma, действующая на колеблющуюся материальную точку массой т, с учетом (141.1) и (1412) равна

 

 

4. Кинетическая энергия материальной точки.

 

Кинетическая энергия материальной точки, совершающей прямолинейные гармони­ческие колебания, равна

или

 

5. Потенциальная энергия материальной точки.

 

Потенциальная энергия материальной точки, совершающей гармонические колеба­ния под действием упругой силы F, равна

или

 

6. Рассмотреть колебания пружинного, физического, математического маятника или колебаний в колебательном контуре (по указанию преподавателя).

 

Для возбуждения и поддержания электромагнитных колебаний использует­ся колебательный контур — цепь, состоящая из включенных последовательно катушки индуктивностью L, конденсатора емкостью С и резистора сопротивлением R.

 

 

7. Сложение гармонических колебаний одного направления и взаимно перпендикулярных колебаний.

8. Дифференциальное уравнение затухающих колебаний (коэффициент затухания, собственная частота колебаний, амплитуда колебаний, время релаксации, декремент затухания, логарифмический декремент затухания).

 

затухающие колебания – колебания, амплитуды которых из-за потерь энергии реальной колебательной системой с течением времени уменьшаются.

Дифференциальное уравнение свободных затухающих колебаний линейной системы задается в виде

(146.1)

где s – колеблющаяся величина, описывающая тот или иной физический процесс, d=const — коэффициент затухания, w 0 — циклическая частота свободных незатуха­ющих колебаний той же колебательной системы, т. е. при d = 0 (при отсутствии потерь энергии) называется собственной частотой колебательной системы.

Промежуток времени t=1/d, в течение которого амплитуда затухающих колебаний уменьшается в е раз, называется временем релаксации.

Если A(t) и А (t + Т) — амплитуды двух последовательных колебаний, соответст­вующих моментам времени, отличающимся на период, то отношение

называется декрементом затухания, а его логарифм

(146.7)

— логарифмическим декрементом затухания; N e число колебаний, совершаемых за время уменьшения амплитуды в е раз. Логарифмический декремент затухания — по­стоянная для данной колебательной системы величина.

 

9. Дифференциальное уравнение вынужденных колебаний.

 

Колебания, возникающие под действием внешней периодически изменяющейся силы или внешней периодически изменяющейся э.д.с., называются соответственно вынужденными механическими и вынужденными электромагнитными колебаниями.

Уравнения (147.2) и (147.4) можно свести к линейному неоднородному дифференци­альному уравнению

 

10. Резонанс.

 

Явление резкого возрастания амплитуды вынужденных колебаний при приближении частоты вынуждающей силы (частоты вынуждающего переменного напряжения) к ча­стоте, равной или близкой собственной частоте колебательной системы, называется резонансом (соответственно механическим или электрическим).

 

11. Волновые процессы. Продольные и поперечные волны.

 

Процесс распространения колебаний в сплошной среде называется волновым про­цессом (или волной). При распространении волны частицы среды не движутся вместе с волной, а колеблются около своих положений равновесия. Вместе с волной от частицы к частице среды передаются лишь состояние колебательного движения и его энергия. Поэтому основным свойством всех волн, независимо от их природы, является перенос энергии без переноса вещества.

В продольных волнах частицы среды колеблются в направлении распространения волны, в поперечных — в плоскостях, перпендикулярных направлению распростране­ния волны.

 

 

12. Уравнение бегущей волны.

 





Поделиться с друзьями:


Дата добавления: 2016-12-18; Мы поможем в написании ваших работ!; просмотров: 238 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Жизнь - это то, что с тобой происходит, пока ты строишь планы. © Джон Леннон
==> читать все изречения...

2295 - | 2065 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.