Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Расчёт параметров охладителя и выбор марки охладителя.




 

Определяем параметры охладителя на один модуль.

 

Рассчитываем максимально допустимое переходное сопротивление охладитель-окружающая среда по формуле:

, (2.2.16)

где - переходное сопротивление промежутка охладитель-окружающая среда;

– температура корпуса теплопроводящей пластины;

– температура охлаждающего воздуха(внутри кабины, станции управления), значении выбирается из интервала от 40 до 50 .

– температура кристалла, предельное значение 125 .

При выборе должно выполняться условие:

,

т.е , (2.2.17)

Рассчитываем по формуле(2.2.16):

Рассчитываем температуру кристалла IGBT ключа по формуле:

, (2.2.18)

Делаем проверка, для этого должно выполнятся следующее условие:

, (2.2.19)

Условие(2.2.19) выполняется. Проверка прошла.

Рассчитываем температуру кристалла обратного диода по формуле:

, (2.2.20)

Делаем проверка, для этого должно выполнятся следующее условие:

, (2.2.21)

 

Условие(2.2.21) выполняется. Проверка прошла.

 

Выбираем марку охладителя из условия(2.2.16):

 

Выбираем охладитель серии BF (фирмы DAV):

Таблица 2.2.2. Параметры охладителя.

тип  
Ширина ,мм 121,4
Толщина ,мм 12,0
Кол-во, ребер  
Толщина ребер 1,2
Расстояние между рёбрами, мм 5,05
0,091

 

 

 

Заключение.

 

Установка скважного центробежного насоса постоянно совершенствуется, увеличиваются эффективность, надежность и долговечность ее узлов, снижается стоимость установок, и проверяются принципиально новые схемы установок.

Наиболее широко до недавних пор велись работы по усовершенствованию узлов электрооборудования установок, имеющих наименьшую надежность и долговечность при нормальных условиях эксплуатации. Опыт такой эксплуатации установок показал, что до 80 % всех подземных ремонтов вызвано выходом из строя электродвигателя, его гидрозащиты и кабеля. Естественно, первоочередная задача в таких условиях – совершенствование этих узлов и станции управления, которая должна защищать их от аварийных режимов.

Например, на АО «АЛНАС» проведены работы, в результате которых было повышено сопротивление изоляции погружного электродвигателя (ПЭД) на порядок (с 200 до 2000 МОм).

Внедрено тестирование изоляции ПЭД по индексу поляризации, что существенно повышает эксплуатационную надежность электродвигателей.

Опробованы и находятся в стадии внедрения новые выводные провода, которые обладают лучшей термостойкостью, сопротивлением изоляции, меньшими токами утечки, меньшим и стабильным размером наружного диаметра. Для пропитки статоров опробован новый компаунд, в котором практически нет летучих веществ, в результате чего удалось добиться лучшего заполнения пазов. Компаунд термостоек при температуре 180 – 200 ºС, при опытной пропитке показал сопротивление изоляции 2000 МОм при температуре 126 ºС.

Разработана, изготовлена и прошла промысловые испытания опытная партия кабельных муфт, конструктивно выполненных по принципу громоотводов. Наконечники муфты залиты в изоляционном материале, что обеспечивает их герметичность и исключает продольное перемещение. Герметичность соединения с головкой ПЭД обеспечивается радиальным уплотнением.

В той же фирме на протяжении ряда лет изготавливались двигатели, оснащенные погружными датчиками системы телеметрии СКАД-2. В настоящее время в кооперации с Ижевским радиозаводом, создали и поставили на промысловые испытания двигатели типа 6ПЭД с системой телеметрии нового поколения. Новая система телеметрии позволяет контролировать и регистрировать следующие параметры:

· давление окружающей среды;

· температуру окружающей среды;

· давление во внутренней полости двигателя;

· температуру обмотки электродвигателя;

· уровень вибрации в двух плоскостях;

· токи утечки (сопротивление изоляции) системы: трансформатор – кабель – электродвигатель.

 

 

 

Список литературы

 

1. Ивановский В.Н., Дарищев В.И., Сабиров А.А., Каштанов В.С., Пекин С.С. Скважные насосные установки для добычи нефти.-М.: «Нефть и газ», 2002.

2. Бурков А.Т. Электронная техника и преобразователи. – М.: Транспорт, 1999. – 464 с.

3. Жежеленко И.В. Показатели качества электроэнергии и их контроль на промышленных предприятиях. – М.: Энергоатомиздат, 1986.

4. Горбачев Г.Н., Чаплыгин Е.Е. Промышленная электроника. – М.: Энергоатомиздат, 1988. – 320 с.

5. Руденко В.С., Сеньков В.И. Основы промышленной электроники. – Киев.: Вища школа, 1985. – 400 с.

6. Прянишников В.А. Электроника: Курс лекций. – СПб.: Корона, 1998. – 400 с.

7. Храмов А.Я. Электропитающие устройства: Методические указания для студентов заочного отделения по специальности 0615. Ч.1. – Л.: ЛИКИ, 1982. – 66 с.

8. Справочник по преобразовательной технике / Под ред. И.М. Чиженко. Киев: Техника, 1978. – 447 с.

9. Тиристорные преобразователи напряжения Т44 для асинхронного элек-тропривода / О.А. Андрющенко, Л.П. Петров и др. – М.: Энергоатомиз-дат, 1986. – 200 с.

10. Карлащук В.И. Электронная лаборатория на IBM РС. – М.: Солон-Р, 1999. – 506 с.

11. Чебовский О.Г., Моисеев Л.Г., Недошивин Р.П. Силовые полупровод-никовые приборы: Справочник. 2-е изд., перераб. и дополн. – М.: Энергоатомиздат, 1985. – 512 с.

12. Справочник по проектированию электроснабжения / Под ред. Ю.Г. Барыбина и др. – М.: Энергоатомиздат, 1990. – 576 с.

13. Закс М.И., Каганский Б.А., Печенин А.А. Трансформаторы для элек-тродуговой сварки. – Л.: Энергоатомиздат, 1988. – 135 с.

 

 

 

Приложения





Поделиться с друзьями:


Дата добавления: 2016-12-17; Мы поможем в написании ваших работ!; просмотров: 412 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Надо любить жизнь больше, чем смысл жизни. © Федор Достоевский
==> читать все изречения...

2332 - | 2011 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.