Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Рассмотрим изменение спроса при изменении дохода




Пусть доход изменяется на dM, тогда спрос изменится согласно формуле:

Уравнения для снова получим, дифференцируя по М соотношения (4.4) и (4.5):

(4.14)

или в матричной форме:

(4.15)

Поэтому

,

откуда имеем:

(4.16)

Объединяя (4.9), (4.13), (4.16), получим следующее уравнение Слуцкого, которое является сердцевиной теории полезности:

(4.17)

А поскольку изучается изменение спроса при росте цены на n -й товар, которая не компенсируется повышением дохода, то вторая составляющая в (4.17) (с отрицательным знаком) как раз и снимает искусственный прирост спроса, вызванный компенсирующим ростом дохода.

Для того чтобы воспользоваться уравнением Слуцкого, изучим свойства матрицы:

Эта матрица симметрична, так симметричной является матрица U-1, а последняя симметричная вследствие симметричности матрицы U.

Матрица H отрицательно полу определена, что означает: zHz ¢ £ 0 для любого вектора-строки z.

Рассмотрим случай, когда z = a p, a ¹ 0, тогда

где ).

Пусть теперь направление z не совпадает с направлением p (т.е. z ¹ a p любого a), тогда z можно представить в виде:

z = a p + v, v = z – a p,

где (это число), n ¹ 0.

Такое представление z дает: а потому поскольку U-1 отрицательно определена.

Если взять за z вектор z = (0, …, 1, 0, …, 0), т.е. вектор-строку, все элементы которого, кроме i- го, равны нулю, а i- й элемент равен 1, то zHz ¢ = hii < 0, т.е. все диагональные элементы матрицы Н отрицательны. Поэтому

(4.18)

Итак, даже при компенсированном росте цены товара спрос на этот товар все же уменьшается.

Товар i называют ценным, если с ростом дохода спрос на него растет , малоценным – если .

Поскольку в соответствии с (4.14)

(4.19)

то ценные товары обязательно существуют.

Спрос на ценный товар убывает при росте цены на него, это непосредственно следует из уравнения Слуцкого для (i -го) товара:

В соответствии с (4.11)

поэтому обязательно найдется такой товар l, для которого

То есть уменьшение спроса на i -й товар приводит к росту спроса на l –й товар. Такие товары называют взаимозаменяемыми, например, животные жиры и растительное масло.

Если же , то товары i и т образуют взаимодополняющую пару (компенсированный рост цены на бензин вызывает спад спроса как на бензин, так и на автомобили).

Продукт l называют валовым заменителем продукта i, если

Функция спроса имеет свойство валовой заменимости, если с ростом цены на любой продукт i спрос на остальные продукты не снижается:

Если же , то функция спроса имеет свойство сильного валового замещения. Можно доказать, что функция спроса, порождена функцией полезности

обладает свойствами сильного валового замещения.

Эффекты замещения и дохода при повышении (снижении) цены на один из товаров иллюстрируют рис. 4.1 и 4.2 соответственно.

Рис. 4.1. Эффект замещения и эффект дохода при повышении цены

Рис. 4.2. Эффект замещения и эффект дохода при снижении цены

Эффект дохода заключается в изменении потребления вследствие изменения реального дохода, возникшего из-за изменения цен.

Эффект замещения заключается в изменении потребления вследствие изменения относительных цен.





Поделиться с друзьями:


Дата добавления: 2016-12-18; Мы поможем в написании ваших работ!; просмотров: 284 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Свобода ничего не стоит, если она не включает в себя свободу ошибаться. © Махатма Ганди
==> читать все изречения...

2338 - | 2092 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.