Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Математическое описание звена.




Пропорциональное звено описывается алгебраическим уравнением:

у(t) = K·х(t)

Физическая реализация звена.

Примерами таких пропорциональных звеньев могут служить, рычажный механизм, жесткая механическая передача, редуктор, электронный усилитель сигналов на низких частотах, делитель напряжения и др.

Переходная функция.

Переходная функция пропорциональное звена имеет вид:

h(t) = L-1[W(s)/s] = L-1[K/s] = K·1(t)

Весовая функция.

Весовая функция пропорционального звена равна:

w(t) = L-1[W(s)] = K·δ(t)

Рис. 3.5. Переходная функция, весовая функция, АФЧХ и АЧХ пропорционального звена.

Частотные характеристики.

Найдем АФЧХ, АЧХ, ФЧХ и ЛАХ пропорционального звена:

W(jω) = K = K +0·j

A(ω) = = K

φ(ω) = arctg(0/K) = 0

L(ω) = 20·lg[A(ω)] = 20·lg(K)

Как следует из представленных результатов, амплитуда выходного сигнала не зависит от частоты. В действительности ни одно звено не в состоянии равномерно пропускать все частоты от 0 до ¥, как правило на высоких частотах, коэффициент усиления становится меньше и стремиться к нулю при ω → ∞. Таким образом, математическая модель пропорционального звена является некоторой идеализацией реальных звеньев.

Апериодическое звено I-ого порядка

Апериодические звенья иначе еще называются инерционными.

Передаточная функция.

Передаточная функция апериодического звена I-ого порядка имеет вид:

W(s) = K/(T·s + 1)

где K – коэффициент усиления; T – постоянная времени, характеризующая инерционность системы, т.е. продолжительность переходного процесса в ней. Поскольку постоянная времени характеризует некоторый временной интервал, то ее величина должна быть всегда положительной, т.е. (T > 0).

Математическое описание звена.

Апериодическое звено I-ого порядка описывается дифференциальным уравнением первого порядка:

T·dу(t)/dt + у(t) = K·х(t)

Физическая реализация звена.

Примерами апериодического звена I-ого порядка могут служить: электрический RC-фильтр; термоэлектрический преобразователь; резервуар с сжатым газом и т.п.

Переходная функция.

Переходная функция апериодического звена I-ого порядка имеет вид:

h(t) = L-1[W(s)·1(t)] = L-1[K/(s·(T·s + 1))] = K – K·e-t/T = K·(1 – e-t/T)

 

Рис. 3.6. Переходная характеристика апериодического звена I-го порядка.

Переходный процесс апериодического звена I-ого порядка имеет экспоненциальный вид. Установившееся значение равно: hуст = K. Касательная в точке t = 0 пересекает линию установившегося значения в точке t = T. В момент времени t = T переходная функция принимает значение: h(T) ≈ 0.632·K, т.е. за время T переходная характеристика набирает только около 63% от установившегося значения.

Определим время регулирования Tу для апериодического звена I-ого порядка. Как известно из предыдущей лекции, время регулирования – это время, после которого разница между текущим и установившимся значениями не будет превышать некоторой заданной малой величины Δ. (Как правило, Δ задается как 5 % от установившегося значения).

h(Tу) = (1 – Δ)·hуст = (1 – Δ)·K = K·(1 – e-Tу/T), отсюда е-Tу/T = Δ, тогда Tу/T = -ln(Δ), В итоге получаем Tу = [-ln(Δ)]·T.

При Δ = 0,05 Tу = - ln(0.05)·T ≈ 3·T.

Другими словами, время переходного процесса апериодического звена I-ого порядка приблизительно в 3 раза превышает постоянную времени.

Весовая функция.

Весовая функция апериодического звена I-ого порядка имеет вид:

w(t) = L-1[W(s)] = L-1[K/(T·s + 1)] = (K/T)·e-t/T

Рис. 3.7. Весовая функция апериодического звена I-го порядка.

Для весовой функции апериодического звена I-ого порядка характерен скачок в начальный момент времени t = 0. Это происходит из-за того, что на вход звена подается δ-функция. Поскольку δ-функция – это математическая абстракция, которую на практике можно смоделировать в виде короткого импульса, то в реальном, физически реализуемом процессе будет наблюдаться переходный процесс, обозначенный на рисунке пунктиром.

Частотные характеристики.

Найдем АФЧХ, АЧХ, ФЧХ и ЛАЧХ апериодического звена I-ого порядка:

W(jω) = K/(T·jω + 1) = K·(T·jω – 1­)/[(T·jω + 1)·(T·jω – 1)] =

= K·(T·jω – 1­)/(-T2ω2 – 1) = K/(T2ω2 + 1) – [KTω/(T2ω2 + 1)]·j

Рис. 3.8. АФЧХ, АЧХ, ФЧХ, ЛАХ и ЛФХ апериодического звена I-ого порядка.

ЛАХ апериодического звена I-ого порядка представляет собой трансцендентную функцию. Чтобы упростить использование ЛАХ, вводят понятие асимптотических ЛАХ, то есть кусочно-линейных функций, не сильно отличающихся от истинных.

Переход к асимптотической ЛАХ: заменяем истинную ЛАХ – ломаной асимптотической. Выделим области низких и высоких частот и по отдельности рассмотрим поведение ЛАХ в этих областях. После чего, оценим максимальную ошибку, возникающую на границе областей.

Область низких частот: T2w2 <<1; т.е. w<<1/T; можно пренебречь выражением T2w2. Получаем: L(w) = 20lgK. Это горизонтальная прямая.

Область высоких частот: T2w2 >>1; т.е. w>>1/T; можно пренебречь 1 в сравнении с выражением T2w2. Получаем L(w) = 20lgK – 20lgTw. Это – уравнение прямой с наклоном -20дБ/декаду. (В логарифмических координатах декада – это интервал, соответствующий изменению частоты в 10раз).

Точке пересечения этих прямых соответствует частота ω1 = 1/T, которая называется частотой сопряжения. Вычислим максимальную ошибку ЛАХ в этой точке:

DLmax = (20lgK) – [20lgK + 10lg(T2w12+1)] = -10lg2» -3 дб.

Следует заметить, что ошибка асимптотической ЛАХ апериодического звена I-ого порядка не зависит от параметров звена (K и T) и равна приблизительно –3 дб.





Поделиться с друзьями:


Дата добавления: 2016-12-06; Мы поможем в написании ваших работ!; просмотров: 1683 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Неосмысленная жизнь не стоит того, чтобы жить. © Сократ
==> читать все изречения...

2311 - | 2015 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.007 с.