Вопрос
Достоинства
- в отличие от гидропривода — отсутствие необходимости возвращать рабочее тело (воздух) назад к компрессору;
- меньший вес рабочего тела по сравнению с гидроприводом (актуально для ракетостроения);
- меньший вес исполнительных устройств по сравнению с электрическими;
- возможность упростить систему за счет использования в качестве источника энергии баллона со сжатым газом, такие системы иногда используют вместо пиропатронов, есть системы, где давление в баллоне достигает 500 МПа;
- простота и экономичность, обусловленные дешевизной рабочего газа;
- быстрота срабатывания и большие частоты вращения пневмомоторов (до нескольких десятков тысяч оборотов в минуту);
- пожаробезопасность и нейтральность рабочей среды, обеспечивающая возможность применения пневмопривода в шахтах и на химических производствах;
- в сравнении с гидроприводом — способность передавать пневматическую энергию на большие расстояния (до нескольких километров), что позволяет использовать пневмопривод в качестве магистрального в шахтах и на рудниках;
- в отличие от гидропривода, пневмопривод менее чувствителен к изменению температуры окружающей среды вследствие меньшей зависимости КПД от утечек рабочей среды (рабочего газа), поэтому изменение зазоров между деталями пневмооборудования и вязкости рабочей среды не оказывают серьёзного влияния на рабочие параметры пневмопривода; это делает пневмопривод удобным для использования в горячих цехах металлургических предприятий.
Недостатки
- нагревание и охлаждение рабочего газа в процессе сжатия в компрессорах и расширения в пневмомоторах; этот недостаток обусловлен законами термодинамики, и приводит к следующим проблемам:
- возможность обмерзания пневмосистем;
- конденсация водяных паров из рабочего газа, и в связи с этим необходимость его осушения;
- высокая стоимость пневматической энергии по сравнению с электрической (примерно в 3-4 раза), что важно, например, при использовании пневмопривода в шахтах;
- ещё более низкий КПД, чем у гидропривода;
- низкие точность срабатывания и плавность хода;
- возможность взрывного разрыва трубопроводов или производственного травматизма, из-за чего в промышленном пневмоприводе применяются небольшие давления рабочего газа (обычно давление в пневмосистемах не превышает 1 МПа, хотя известны пневмосистемы с рабочим давлением до 7 МПа — например, на атомных электростанциях), и, как следствие, усилия на рабочих органах значительно ме́ньшие в сравнении с гидроприводом). Там, где такой проблемы нет (на ракетах и самолетах) или размеры систем небольшие, давления могут достигать 20 МПа и даже выше.
- для регулирования величины поворота штока привода необходимо использование дорогостоящих устройств — позиционеров.
Типы компрессоров. Поршневые компрессоры. Одноступенчатое и двухступенчатое сжатие.
Вопрос
Общепринятая классификация механических компрессоров по принципу действия, под принципом действия понимают основную особенность процесса повышения давления, зависящую от конструкции компрессора. По принципу действия все компрессоры можно разделить на две большие группы: динамические и объёмные.
Объёмные компрессоры
В машинах объёмного принципа действия рабочий процесс осуществляется в результате изменения объёма рабочей камеры. Номенклатура машин данного типа разнообразна и насчитывает более десятка, основные из них: поршневые, винтовые, роторно-шестерёнчатые, мембранные, жидкостно-кольцевые, воздуходувки Рутса, спиральные, компрессор с катящимся ротором.
Поршневые компрессоры могут быть одностороннего или двухстороннего действия, крейцкопфные и бескрейцкопфные, смазываемые и без применения смазки (сухого трения или сухого сжатия), при высоких давлениях сжатия применяются также плунжерные.
Роторные компрессоры — машины с вращающим сжимающим элементом, конструктивно подразделяются на винтовые, ротационно-пластинчатые, жидкостно-кольцевые, встречаются и другие конструкции.
Винтовые компрессоры
Конструкция винтового блока состоит из двух массивных винтов и корпуса. При этом винты во время работы находятся на некотором расстоянии друг от друга, и этот зазор уплотняется масляной пленкой. Трущихся элементов нет.
Таким образом, ресурс винтового блока практически неограничен и достигает более чем 200—300 тыс. часов. Регламентной замене подлежат лишь подшипники винтового блока.
Пластинчато-роторные компрессоры
Конструкция пластинчато-роторного блока состоит из одного ротора, статора и минимум восьми пластин, масса которых, а, соответственно, и толщина, ограничены. На пластину в процессе работы действуют силы: центробежная и трения/упругости масляной пленки.
Так как масляная пленка нормализуется и становится равномерной и достаточной лишь после нескольких минут работы компрессора, то во время стартов и остановов идет трение пластин о статор и соответственно повышенный их износ и выработка.
Чем большее давление должен нагнетать такой блок, тем большая разницы давлений в соседних камерах сжатия, и тем большая должна быть центробежная сила для недопускания перетоков сжимаемого воздуха из камеры с большим давлением в камеру с меньшим. В свою очередь, чем больше центробежная сила, тем больше и сила трения в момент пуска/останова и тем тоньше масляная пленка во время работы — это является основной причиной почему данная технология получила широкое распространение в области вакуума (то есть давление до 1 бара) и в области нагнетания давления до 3-4 бар.
Так как масляная пленка между пластинами и статором всего несколько микрон, то любая пыль, тем более твердые частички крупнее размеров, выступают как абразив, который царапает статор и делает выработку по пластинам. Это приводит к тому, что возникают перепуски сжимаемого воздуха из одной камеры сжатия в другую и производительность заметно падает.
В отличие от небольших вакуумных насосов, где широко применяется пластинчато-роторная технология, в компрессорах большой производительности и давлением выше 5 бар со временем необходимо будет менять весь блок в сборе, так как замена отдельно пластин эффективна лишь в случае восстановления геометрии статора, а такие большие статоры восстановлению (шлифовке) не подлежат.
Производители обычно не дают никаких данных по ресурсу пластинчато-роторного блока, так как он очень сильно зависит от качества воздуха и режима работы компрессора. В случае газовых компрессоров, где он качает газ практически не останавливаясь круглый год, ресурс может действительно достигать и более 100 тыс. часов потому что масляная пленка равномерная и достаточная все время работы без остановок.
В случае же промышленного использования, где разбор воздуха крайне неравномерен и компрессор запускается и останавливается несколько десятков раз в день, большую часть времени нормальной для работы масляной пленки внутри блока нет, что является причиной агрессивного износа пластин. В таком случае ресурс блока не более 25 тыс. часов.
Динамические компрессоры
Основная статья: Турбокомпрессор
В компрессорах динамического принципа действия газ сжимается в результате подвода механической энергии от вала, и дальнейшего взаимодействия рабочего вещества с лопатками ротора. В зависимости от направления движения потока и типа рабочего колеса такие машины подразделяют на центробежные и осевые.
Турбокомпрессоры — динамические машины, в которых сжатие газа происходит в результате взаимодействия потока с вращающейся и неподвижной решётками лопастей.
Прочие классификации
По назначению компрессоры классифицируются по отрасли производства, для которых они предназначены (химические, холодильные, энергетические, общего назначения и т. д.). По роду сжимаемого газа (воздушный, кислородный, хлорный, азотный, гелиевый, фреоновый, углекислотный и т. д.). По способу отвода теплоты — с жидкостным или воздушным охлаждением.
По типу приводного двигателя — с приводом от электродвигателя, двигателя внутреннего сгорания, паровой или газовой турбины. Дизельные газовые компрессоры широко используются в отдаленных районах с проблемами подачи электроэнергии. Они шумные и требуют вентиляции для выхлопных газов. С электрическим приводом компрессоры широко используются в производстве, мастерских и гаражах с постоянным доступом к электричеству. Такие изделия требуют наличия электрического тока напряжением 110-120 Вольт (или 230-240 Вольт). В зависимости от размера и назначения компрессоры могут быть стационарными или портативными. По устройству компрессоры могут быть одноступенчатыми и многоступенчатыми.
По конечному давлению различают:
- вакуум-компрессоры, газодувки — машины, которые отсасывают газ из пространства с давлением ниже или выше атмосферного. Воздуходувки и газодувки подобно вентиляторам создают поток газа, однако, обеспечивая возможность достижения избыточного давления от 10 до 100 кПа (0,1…1 атм), в некоторых специальных исполнениях — до 200 кПа (2 атм). В режиме всасывания воздуходувки могут создавать разрежение, как правило, 10..50 кПа, в отдельных случаях до 90 кПа и работать как вакуумный насос низкого вакуума[1];
- компрессоры низкого давления, предназначенные для нагнетания газа при давлении от 0,15 до 1,2 МПа;
- компрессоры среднего давления — от 1,2 до 10 МПа;
- компрессоры высокого давления — от 10 до 100 МПа.
- компрессоры сверхвысокого давления, предназначенные для сжатия газа выше 100 МПа.
В автокомпрессорах применяют компрессоры с V-образным расположением цилиндров (рис. 173). В процессе работы поршневого компрессора силы инерции периодически изменяются по величине и направлению, создавая неуравновешенность системы.
По исполнению конструкции поршневые компрессоры бывают одно-, двух- и многоступенчатого сжатия. В автокомпрессорах применяют одно- и двухступенчатые компрессорные установки с одним, двумя или тремя цилиндрами на каждой ступени сжатия.
Рис. 173. Схема поршневого компрессора с V-образным расположением цилиндров I и II ступеней.
В компрессоре одноступенчатого сжатия (рис. 174,а) в цилиндре помещен поршень, который соединен посредством шатуна шарнирно с коленчатым валом. При вращении коленчатого вала поршень совершает возвратно-поступательное движение.
Рис. 174. Компрессоры одноступенчатого (а) и двухступенчатого (б) сжатия:
1 — корпус; 2 — поршень; 3, 4 — всасывающий и нагнетательный клапаны; 5 — шатун; 6 — коленчатый вал; 7, 9 — цилиндры I и II ступеней; 8 — холодильник.
В крышке цилиндра расположены автоматически действующие всасывающий и нагнетательный клапаны. Компрессоры одноступенчатого сжатия (или простого действия) могут создавать давление нагнетания не более 5 кгс/см2.
В компрессоре двухступенчатого сжатия (рис. 174,6) всасываемый воздух сжимается дважды: вначале до определенного давления в цилиндре I ступени, затем, пройдя холодильник, под давлением поступает в цилиндр ступени, где сжимается до конечного давления. Двухступенчатые компрессоры создают, как правило, давление нагнетания до 12 кгс/см2, при этом в цилиндрах компрессора температура сжимаемого воздуха повышается до 190°С и более.
Применяемые для смазывания компрессоров смазочные масла имеют температуру вспышки 210—240°С. При достижении такой температуры масло разлагается, выделяя твердые частитцы и газы. Эти газы, смешиваясь с воздухом, образуют взрывчатую смесь, которая может оказаться причиной взрыва компрессора. Поэтому для регулирования температуры сжимаемого воздуха после каждой ступени сжатия в компрессоре устанавливают холодильник для охлаждения цилиндров.
В двухступенчатом компрессоре одно и то же количество воздуха последовательно проходит через I и II ступени сжатия.
Рис. 175. Двухступенчатый компрессор ПК-3,5:
1 – маслопровод; 2 — воздушный фильтр; 3, 9 — цилиндры I и II ступеней; 4, 10 — поршни; 5 — коробка клапанов; 6 — предохранительный клапан; 7 — холодильник; 8 — клапан; 11 — шатун; 12 — маслоуказатель; 13 – корпус компрессора; 14 — маслянный насос; 15 — сапун; 16 — вентилятор; 17 — нагнетательный патрубок; 18 — коленчатый вал; 19 — шкив; 20 — сливная пробка.
В автокомпрессорах, используемых в строительстве и в ремонт-но-эксплуатационных хозяйствах, устанавливают, как правило, двухступенчатые компрессоры.
Компрессор ПК-3,5 (рис.175), применяемый в автокомпрессорах АПКС-3, двухступенчатый, имеет два цилиндра I ступени и два цилиндра II ступени с воздушным охлаждением.
Производительность компрессора 3,5 м3/мин, давление нагнетания 7 кгс/см2. При работе компрессора воздух всасывается в два цилиндра I ступени и сжатый до определенного давления проходит через холодильник в два цилиндра II ступени, где сжимается до конечного давления.
Корпус компрессора литой чугунный с четырьмя лапами крепления. К корпусу на шпильках прикреплены четыре чугунных цилиндра (с ребрами для увеличения поверхности охлаждения) с рядным расположением и углом развала 90°. Коленчатый вал стальной штампованный с двумя противовесами, вращается на двух шариковых подшипниках и имеет систему каналов для прохода смазки. В торец вала запрессована втулка с квадратным отверстием для привода масляного насоса. Шатуны всех цилиндров одинаковые. В нижней разъемной головке шатуна установлены два тонкостенных вкладыша, залитых баббитом. К верхним головкам шатунов с помощью поршневых пальцев плавающего типа присоединены алюминиевые и чугунные поршни соответственно I и II ступеней. На каждом поршне установлены четыре поршневых кольца: два верхних (компрессионные) и два нижних (малосъемные). Малосъемные кольца имеют радиальные пазы для прохода смазки, снятой с зеркала цилиндра. К верхним фланцам цилиндров I и II ступеней на шпильках крепятся клапанные коробки. Клапаны самодействующие с фторопластовыми вставками. Всасываемый компрессором воздух очищается в воздушных фильтрах, соединенных с клапанными коробками I ступени. Фильтрующим элементом в фильтрах служит капроновая набивка. После сжатия в цилиндрах I ступени воздух охлаждается в промежуточных холодильниках трубчатого типа. На клапанных коробках цилиндров I ступени установлены предохранительные клапаны, которые предназначены для поддержания заданного давления при сжатии воздуха между цилиндрами I и II ступени. Холодильники и цилиндры обдуваются вентилятором, установленным на кронштейне компрессора. Вентилятор приводится во вращение клиновым ремнем от шкива. Внутренняя полость корпуса компрессора сообщается с атмосферой через сапун, имеющий обратный клапан и фильтрующую набивку.
Подачу смазки контролируют по показаниям манометра: давление масла при 1450 об/мин должно быть не менее 1,8 кгс/см2. Для устранения колебаний стрелки манометра (вследствие пульсирующей подачи масла насосом) в узле масляного трубопровода имеется отверстие диаметром 0,5 мм и краник. Нормальное положение краника — закрытое. Смазывание компрессора комбинированное. Масло под давлением от масляного насоса через пустотелый валик поступает в шатунные шейки коленчатого вала и поршневые пальцы; остальные детали смазываются разбрызгиванием, подшипники вентилятора – консистентной смазкой. На крышке масляного насоса установлен редукционный клапан, с помощью которого регулируют давление масла. Масло заливают в картер компрессора через отверстие для маслоуказателя или через отверстие под сапун, сливают масло из картера через отверстие, закрываемое пробкой. Уровень масла проверяют маслоуказателем при завернутом его положении.
Компрессор ВУ-2,5/12 (рис.176) двухступенчатый двухцилиндровый, производительность 2,6 м3/мин, давление нагнетания 12 кгс/см2. Этот компрессор может также работать при давлении 8 кгс/см2 без каких-либо конструктивных изменений.
По конструкции и компоновке компрессор отличается от компрессора ПК-3,5 числом цилиндров, конструкцией холодильников, систем управления и контроля за работой компрессора.
Рис. 176. Компрессор ВУ-2,5/12:
1 – пробка; 2 — прокладка; 3 — картер; 4 — коленчатый вал; 5 — масляный насос; 6 – фильтр с глушителем; 7 — предохранительный клапан; 8 — холодильник; 9 – соединительный корпус; 10 – меховик-вентилятор; 11 — поддон; 12 — щуп; 13 – сапун; 14, 21 — цилинры I и II ступеней; 15, 20 – поршни I и II ступеней; 16, 19 — клапаны I и II ступеней; 17, 18 — крышки I и II ступеней.
В его конструкции предусмотрено для установки три точки опоры на виброизолирующих устройствах, что делает его более виброустойчивым и позволяет устанавливать в любых местах при эксплуатации. Контроль и регулирование работы компрессора могут осуществляться вручную или автоматически.
Картер 3 компрессора литой чугунный. Коленчатый вал литой из высокопрочного чугуна. Корпус обеспечивает соосность валов компрессора и редуктора и одновременно является корпусом вентилятора. Цилиндры литые чугунные. Поршни I ступени литые из алюминиевого сплава, поршни II ступени из чугуна. Между цилиндрами и поршнями установлены поршневые уплотнительные и маслосъемные кольца. На стороне всасывания и нагнетания установлены самодействующие всасывающие и нагнетательные клапаны и, закрытые крышками цилиндров I и II ступеней. Цилиндры, поршневые пальцы смазываются разбрызгиванием, а механизм движения — от масляного насоса. Холодильник пластинчато-ребристый с воздушным охлаждением от вентилятора, снабжен электромагнитным клапаном для продувки конденсата и разгрузки компрессора перед пуском. Воздух в компрессор всасывается через воздушный фильтр. Картер компрессора закрывается поддоном, в котором имеется пробка для слива масла. В картере установлены сапун и масломерный щуп.