Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Однокристальный векторно-конвейерный процессор SX-6




Микропроцессор создан по 0,15-микронной КМОП-технологии с медными проводниками и содержит приблизительно 57 млн. транзисторов. Основными компонентами микропроцессора являются скалярный процессор и 8 идентичных векторных устройств. Скалярный процессор имеет суперскалярную архитектуру с 4 результатами за такт и использует 128 64-разрядных регистров. При частоте 500 МГц пиковая производительность скалярного процессора составляет 1 GFLOPS. Каждое из 8 идентичных векторных устройств содержит 5 конвейеров обработки данных, выполняющих логические операции, маскирование, сложение/сдвиги, умножение и деление над операндами, размещенными в векторных регистрах, а также один конвейер обменов данными (загрузки-выгрузки) между векторными регистрами и основной памятью. Суммарный объем регистров в 8 векторных устройствах составляет 18 Кбайт (эквивалентно 288 64-разрядным регистрам).

В векторном устройстве операции умножения и сложения могут сцепляться, за счет чего пиковая производительность одного устройства при частоте 500 МГц может достигать 1 GFLOPS. Пропускная способность интерфейса с памятью равна 32 Гбайт/с, что позволяет каждому из 8 векторных устройств прочитать из памяти или записать в память один операнд в каждом такте. Производительность SX-6 составляет 8 GFLOPS.

Литература

1. Э.В. Евреинов, Ю.Г. Косарев. Однородные универсальные вычислительные системы высокой производительности. // Новосибирск: Наука, 1966.

2. K. Batcher. STARAN Parallel Processor System Hardware. NCC, 1974.

3. Reddaway. DAP - A Distributed Array Processor. Proc. of 1 st Annual Symposium on Computer Architecture, IEEE, 1973.

4. W. Hillis. The Connection Machine. The MIT Press, 1985.

5. Cray Research, CRAY-1 Computer System Hardware Reference Manual, Bloomington, Minn., pub. no. 2240004, 1977.

6. G. Bell. Ultracomputers: A Teraflop Before Its Time. Communications of the ACM. Vol. 35, No. 8, August 1992.

7. В. Корнеев. Архитектуры с распределенной разделяемой памятью. Открытые системы, № 3, 2001.

8. J. Makino, E. Kokubo, T. Fukushige, H. Daisaka. Tops simulation of planetesimals in Uranus-Neptune region on GRAPE-6. Proc. of SC-2002.

9. Programmable Logic Data Book. Xilinx, Xilinx, Inc. 1999.

10. DeHon. The Density Advantage of Configurable Computing. Computer, No. 4. 2000.

11. IEEE Std 1076-1993. VHDL'93. IEEE Standard VHDL Language Reference Manual.

12. М.П. Богачев. Архитектура вычислительной системы с однородной структурой. В кн. Однородные вычислительные среды. Львов. ФМИ АН УССР. 1981.

13. В.С. Седов. Матрица одноразрядных процессоров. Львов. НТЦ "Интеграл". 1991.

14. L. Durbeck, N. Macias. The Cell Matrix: An Architecture for Nanocomputing, www.cellmatrix.com.

15. M. Taylor, J. Kim, J. Miller at al. The Raw Microprocessor: A Computational Fabric for Software Circuits and General-Purpose Programs. IEEE Micro, 2002, Vol. 22, No. 2.

16. Smith D., Hall J., Miyake K. The CAM2000 Chip Architecture. Rutgers University. http://www.cs.rugers.edu/pub/technical-reports.

17. С. Кун. Матричные процессоры на СБИС. // М.: Мир. 1991.

18. Фортов В.Е., Левин В.К., Савин Г.И., Забродин А.В., Каратанов В.В., Елизаров Г.С., Корнеев В.В., Шабанов Б.М. "Наука и промышленность России". Суперкомпьютер МВС-1000М и перспективы его применения. "Наука и промышленность России" 2001, № 11(55).

19. Виксне П.Е., Каталов Ю.Т., Корнеев В.В., Панфилов А.П., Трубецкой А.В., Черников В.М. Транспьютероподобный 32-разрядный RISC-процессор с масштабируемой архитектурой. Вопросы радиоэлектроники. Серия ЭВТ. Выпуск 2, НИИЭИР, 1994.

20. Т. Кохонен. Ассоциативная память. М.: Мир, 1980.

21. Амамия М., Танака Ю. Архитектура ЭВМ и искусственный интеллект. М.: Мир, 1993.

22. 3.Smith D., Hall J., Miyake K. The CAM2000 Chip Architecture. Rutgers University, http://www.cs.rugers.edu/pub/technical-reports.


Лекция 27. Принципы построения телекоммуникационных вычислительных систем.

Введение

Телекоммуникации можно определить как технологию, связывающую информационные массивы, зачастую находящиеся не некотором расстоянии друг от друга. В настоящее время в телекоммуникациях происходит революция, затрагивающая два аспекта: быстрые изменения в технологиях коммуникаций и не менее важные изменения в вопросах владения, контроля и предоставления коммуникационных услуг. Сегодняшние менеджеры должны разбираться в возможностях и преимуществах различных коммуникационных технологий, а также уметь сопоставлять затраты и прибыль, получаемую при правильном использовании телекоммуникаций.

Телекоммуникационная система – это совокупность аппаратно и программно совместимого оборудования, соединенного в единую систему с целью передачи данных из одного места в другое. Телекоммуникационная система способна передавать текстовую, графическую, голосовую или видеоинформацию. В этой главе описаны основные компоненты телекоммуникационных систем. В следующих разделах объясняется, как эти компоненты работают совместно друг с другом, образуя различные виды сетей.

В состав типичной коммуникационной системы входят серверы, пользовательские компьютеры, каналы связи (на рисунке они обозначены красными линиями), а также активное оборудование – модемы, концентраторы и проч.





Поделиться с друзьями:


Дата добавления: 2016-12-06; Мы поможем в написании ваших работ!; просмотров: 426 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Неосмысленная жизнь не стоит того, чтобы жить. © Сократ
==> читать все изречения...

2335 - | 2044 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.