Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Метод направленного электромагнитного излучения




В основе данного метода лежит измерение коэффициента отражения посредством совмещения прямого и отражённого испытательных сигналов [10].

Метод использует излучение сверхчастотных импульсов, проникающих до дна резервуара сквозь заполняющее его вещество. В случае, когда импульс достигнет поверхности вещества, импеданс[1] среды распространения излучения изменяется из-за влияния диэлектрических характеристик содержимого резервуара. Часть сигнала отражается обратно к приёмнику, который с высокой точностью определяет интервал времени между излучённым и отражённым сигналами, анализирует его и указывает уровень вещества в заданных единицах (футах, метрах и др.) [10].

Радарная технология излучения через воздух (микроволновые бесконтактные уровнемеры) базируется на аналогичных принципах измерения, но ложные эхосигналы были и остаются для неё существенной проблемой. При ориентации излучателя радара в направлении дна бункера возникают условия для отражения излучённого сигнала от стенок резервуара и образования паразитных отражённых сигналов, которые должны быть подавлены в приёмнике. Кроме того, зачастую внутри резервуара имеются внутренние препятствия, такие как системы трубопроводов, патрубки, лестницы и т.п., которые способствуют появлению дополнительных паразитных сигналов. Главной причиной возникновения ложных отражений является излучение радарных сигналов в расширенном конусе, т.е. с относительно широкой диаграммой направленности [10].

В методе направленного электромагнитного излучения (рис.4) (микроволновые контактные уровнемеры) радарный луч фокусируется волноводом (зондом) в форме специально сконструированного металлического стержня или троса. Волновод опускается в вещество, уровень которого необходимо определить, и создаёт вдоль своей оси диаграмму направленности излучения цилиндрической формы с относительно небольшим диаметром, предотвращая тем самым рассеивание излучаемого сигнала в резервуаре. Результатом этого являются более высокая надёжность и лучшие рабочие характеристики по сравнению с бесконтактными методами [10].

Конструктивно волновод микроволнового контактного уровнемера может быть выполнен как одинарный стержень (трос), так и сдвоенный трос (рис.5).

Конструкции со сдвоенными стержнями имеют преимущество, заключающееся в том, что электрическое поле сконцентрировано вокруг волновода и поэтому достаточно устойчиво к влиянию со стороны элементов конструкции резервуара.

Проблемы, связанные с налипанием, в гораздо меньшей степени проявляются в случае применения конструкций с одним тросом или стержнем. Однако силовые линии электрического поля одинарного волновода не являются замкнутыми, из-за чего на поле могут оказывать ощутимое влияние внутренние элементы конструкции резервуара [10].

 

 

Рис.4. Совмещение излученного и отраженного сигналов при реализации метода направленного электромагнитного излучения.

Рис.5. Микроволновые контактные уровнемеры с волноводами стержневой и коаксиальной конструкции.

 

Библиографический список

 

1. Кулаков, М.Н. Технологические измерения и приборы для химических производств / М.Н. Кулаков. – 3-е изд., перераб. и доп. - М.: Машиностроение, 1974. -464с.

2. Технические средства контроля в системах управления технологическими процессами: учеб. пособие. Ч. 1./ Р.Р. Гареев [и др.]. – Казань: Изд-во Казан. гос. технол. ун-та, 2004 - 60с.

3. Приборы измерения и контроля систем управления технологическими процессами: методические указ. К лабораторному практикуму / сост. В.М.Анкудинов; Казан. Гос. технол. ун-т. – Казань, 2002. – 60с.

4. Каминский, М.Л. Монтаж приборов и средств автоматизации / М.Л. Каминский, В.М. Каминский. – Москва: Изд. центр «Академия», 2001. – 304с.: ил.

5. ГОСТ 6616-94. Преобразователи термоэлектрические. Общие технологические условия.– М.: Изд-во стандартов, 1994.

6. ГОСТ 6651-94. Термопреобразователи сопротивления.. Общие технологические требования и методы испытаний.– М.: Изд-во стандартов, 1998.

7.Лапшенков, Г.И. Автоматизация производственных процессов в химической промышленности. Технические средства и лабораторные работы / Г.И. Лапшенков, Л.М. Полоцкий – Москва: Издательство «Химия», 1988. - 288с.

8. Фарзане, Н.Г. Технологические измерения и приборы / Н.Г. Фарзане, Л.В. Ильясов, А.Ю.Азим–Заде – Москва.: Издательство «Высш. шк.», 1989. – 456с.: ил.

9. Вельмогин, А.М. Перспективные направления измерения расхода в нефтегазовом комплексе / А.М. Вельмогин, Д.Л. Ушаков, А.М. Скосарев // Мир измерений. – 2003. – №7. – С.4–13.

10. Жданкин, В.К. Измерение уровня посредством направленного электромагнитного излучения / В.К. Жданкин // СТА. Современные технологии автоматизации. – 2004. – №4. – С. 6–14.

 

 

 

Герке Андрей Романович

Ившин Валерий Петрович

Перухин Марат Юрьевич

Семичёв Сергей Арнольдович

Фафурин Андрей Викторович

Хайрутдинов Айрат Ильдусович

 

 

ТЕХНИЧЕСКИЕ СРЕДСТВА КОНТРОЛЯ В СИСТЕМАХ УПРАВЛЕНИЯ ТЕХНОЛОГИЧЕСКИМИ ПРОЦЕССАМИ

 


[1] Импеданс - полное сопротивление электрической цепи переменному току, обусловленное омическим, индуктивным и емкостным сопротивлением цепи.





Поделиться с друзьями:


Дата добавления: 2016-12-06; Мы поможем в написании ваших работ!; просмотров: 1103 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Логика может привести Вас от пункта А к пункту Б, а воображение — куда угодно © Альберт Эйнштейн
==> читать все изречения...

2223 - | 2152 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.