РП 17 Уравновешивание двигателей внутреннего сгорания. Силы, возникающие при работе автомобильных и тракторных двигателей, можно разделить на два вида: уравновешенные и не-уравновешенные. Уравновешенными силами называют силы, равнодействующая которых по отношению к опорам двигателя равна нулю и которые при их суммировании не дают свободного момента. К таким силам относятся силы давления газов в цилиндре двигателя и силы трения. К неуравновешенным силам относят силы, которые передаются на опоры двигателя: вес двигателя, реакции выпускных газов и движущихся жидкостей, центробежные силы инерции вращающихся масс двигателя, силы инерции возвратно-поступательно движущихся масс двигателя, касательные силы инерции вращающихся масс, возникающие вследствие непостоянной угловой скорости вращения коленчатого вала. Во всех поршневых двигателях имеет место также переменный реактивный момент, при любом положении коленчатого вала равный по величине, но противоположный по направлению крутящему моменту двигателя. В обычных автомобильных и тракторных двигателях реактивный момент уравновесить невозможно и во время работы он всегда передается на раму автомобиля или трактора. Неуравновешенные силы, переменные по величине и направлению, могут вызвать вибрации, как двигателя, так и всего автомобиля или трактора, причем наибольшие сотрясения вызываются силами инерции вращающихся и поступательно движущихся масс двигателя. С увеличением равномерности крутящего момента двигателя вибрации двигателя, зависящие от реактивного момента, уменьшаются. Неуравновешенные силы, постоянные по величине и направлению, вибраций двигателя не вызывают. Вибрации двигателя при недостаточной жесткости его деталей могут возникнуть также под действием переменных сил давления газов. Эти вибрации устраняются увеличением жесткости деталей двигателя. Для устранения отрицательных последствий, связанных с наличием вибраций, двигатель должен быть динамически уравновешен. В уравновешенном двигателе при установившемся режиме работы силы и моменты сил, передаваемые на его опоры, постоянны по величине и направлению или равны нулю. Уравновешивание современных автомобильных и тракторных двигателей можно осуществить двумя способами: 1-расположением определенным образом цилиндров и выбором такой кривошипной схемы коленчатого вала, чтобы переменные силы инерции и их моменты взаимно уравновешивались; 2-созданием с помощью дополнительных масс (противовесов) новых сил, в любой момент времени равных по величине, но противоположных по направлению основным уравновешиваемым силам.
Очень часто оба эти способа применяются одновременно. Далее рассматриваются способы уравновешивания лишь наиболее значительных сил и их моментов, к числу которых относятся: P1j – гармонически изменяющаяся сила инерции первого порядка от возвратно-поступательно движущихся масс; P2j – гармонически изменяющаяся сила инерции второго порядка от возвратно-поступательно движущихся масс; Рr – центробежная сила инерции неуравновешенных вращающихся масс; M1 – свободный момент от сил инерции первого порядка; М2 – свободный момент от сил инерции второго порядка; Mr – свободный момент от сил инерции вращающихся масс.
Особенно значительные вибрации могут вызываться неравномерным реактивным моментом и гармонически изменяющимися силами инерции и их моментами при резонансе, т. е. в случае, если частоты этих сил или моментов становятся равными частоте собственных колебаний двигателя на опорах.
РП 18 Уравновешивание сил инерции с помощью специальных механизмов. Смотри пункт 17(основу взять из него). Силы инерции двс уравновешивают конструкционно и с помощью специальных межанизмов (конструкционное расположение цилиндров, РЯДный, апозитный, V-образный и т.д.). В редких случаях выполняется уравновешивание с использованием дополнительных балансировочных валов и противовесов, например, двигатель Saab 2.3.
«Рабочие процессы, конструкция и основы расчета энергетических установок»
1. Классификация поршневых ДВС.
2. Действительный рабочий цикл двигателя внутреннего сгорания.
3. Расчет действительного цикла двигателя, параметры впуска.
4. Расчет процесса сжатия.
5. Определение параметров цикла в конце процесса сгорания.
6. Процесс расширения.
7. Процесс выпуска.
8. Индикаторная диаграмма цикла.
9. Индикаторные и эффективные показатели рабочего цикла.
10. Показатели токсичности работы двигателя.
11. Построение индикаторной диаграммы.
12. Тепловой баланс двигателя.
13. Определение и классификация характеристик ДВС.
14. Регуляторная характеристика дизельного двигателя.
15. Основы кинематического расчета КШМ.
16. Основы двигателя расчета двигателя.
17. Уравновешивание двигателей внутреннего сгорания.
18. Уравновешивание сил инерции с помощью специальных механизмов.
19. Применение альтернативных видов топлив.
20. Новые типы двигателей.
РП 19 Применение альтернативных видов топлив. Разработка новых способов смешения и растворения и математического описания воздействия соответствующих присадок и добавок в нефтяном топливе позволит значительно сократить время на разработку новых составов альтернативных топлив и предсказания их физико-химических свойств, что, в свою очередь, легче позволит довести рабочий процесс двигателя при использовании новых альтернативных топлив. Развитие перехода на новые виды топлива будет проходить три основных этапа. На первом этапе будет использоваться стандартное нефтяное топливо, спирты, добавки водорода и водородсодержащих топлив, газовое топливо и различные их сочетания, что позволит решить проблему частичной экономии нефтяного топлива. Второй этап будет базироваться на производстве синтетических топлив, подобных нефтяным, производимых из угля, горючих сланцев и т.д. На этом этапе решатся проблемы долгосрочного снабжения существующего парка двигателей новыми видами топлива. На заключительном, третьем этапе будет характерен переход к новым видам энергоносителей и энергосиловых установок (работа двигателей на водороде, использование атомной энергии).
Перевод ДВС на водород и водородсодержащее топливо представляет собой сложный социально-экономический процесс, для осуществления которого потребуется крупная перестройка ряда отраслей промышленности, поэтому на первом этапе наиболее приемлемым вариантом является работа дизелей с добавками водородсодержащих топлив.
Также крайне слабо исследован вопрос о применении в дизелях синтетического жидкого топлива (СЖТ), вырабатываемого из угля. Различные литературные данные не позволяют дать однозначную оценку влияния СЖТ на рабочий процесс, в связи с тем, что его физико-химические свойства очень сильно зависят от исходного сырья и технологии переработки.
Наиболее вероятным источником моторного топлива могут служить спирты, однако следует учесть их крайне плохие моторные свойства в случае использования их в дизелях. Применяемые способы использования спиртовых топлив требуют дополнительного усложнения конструкции (установка карбюраторов, свечей зажигания или второй топливной системы), либо удорожания топлива (использование добавок, повышающих цетановое число). Наиболее оптимальным в этой ситуации может служить способ использования растворов этанола или метанола с дизельным топливом в дизелях.
Биогаз “Сырой” биогаз представляет собой смесь метана, углекислого газа и небольшого количества азота. Возможно также присутствие сероводорода. Он обладает хорошей теплотворной способностью, которая может быть дополнительно сильно повышена при удалении из него углекислоты. Биогаз вырабатывается анаэробными метансинтезирующими бактериями из любой биомассы. Технология получения сырого биогаза исключительно проста: биомасса (чаще всего отходы животноводства) складывается в ёмкость и изолируется от доступа воздуха. В течение нескольких дней бактерии расходуют остатки кислорода и переходят на анаэробный цикл, отходом которого является биогаз. Отделение биогаза от исходного сырья трудностей не представляет, так как исходное сырьё является жидким либо твёрдым. Очистка от углекислоты осуществляется путём растворения её в воде при высоком давлении (растворимость метана значительно ниже). Очищать биогаз от азота возможно, но энергоёмко и нецелесообразно. Очистка от сероводорода необходима и может осуществляться водным раствором медного купороса и сульфата железа (III). Попутным продуктом очистки является коллоидная сера, необходимая как средство защиты растений. Очищенный биогаз пригоден к использованию любыми устройствами, работающими на природном газе, с поправкой на его несколько меньшую теплотворную способность. Отходов после производства биогаза нет, так как продукт переработки биомассы, по сути, является органическим удобрением.
Итог. Технология производства биогаза проста и хорошо отработана. Для его производства пригодна практически любая биомасса. Отделение биогаза от сырья не представляет проблемы. Перед использованием биогаза необходима очистка от углекислоты и сероводорода, что осложняет его крупномасштабное использование, но эта проблема решаема. Отходов, требующих переработки, после выработки биогаза не остаётся. Биогаз является полностью возобновляемым ресурсом, производство которого легко наладить в любой местности. Наиболее предпочтительно использование биогаза на месте, без транспортировки. Итак, полностью возобновляемым ресурсом с наиболее простой технологией получения является биогаз. Альтернативным полностью возобновляемым ресурсом является солома, но технология её использования несколько сложнее. Дрова, лигнин, спирт и биодизель полностью возобновляемыми ресурсами не являются, так как в случае дров скорость их потребления превосходит скорость роста древесины, а выработка лигнина, спирта и биодизеля зависит от широкого ряда параметров и не является стабильной. Кроме того, технологии спирта и биодизеля значительно сложнее и требуют высокой квалификации персонала. Бытовой мусор предпочтительнее разделять на исходные компоненты и перерабатывать, что в дальнейшем должно исключить его из списка видов альтернативного топлива.
Биодизель Биодизель представляет собой смесь переэтерифицированных спиртом растительных жиров. С химической точки зрения – это смесь высококипящих сложных эфиров. Теплотворная способность биодизеля очень велика и мало уступает нефти. Биодизель удобно хранить: он мало испаряется, не сорбирует воду, при правильном приготовлении не вызывает коррозии металла. Биодизель пригоден для применения во всех установках, использующих дизельное топливо: горелках, двигателях внутреннего сгорания. Главной проблемой является производство биодизеля. Как уже описано выше, его получают переэтерификацией растительных жиров. Значит, необходимо вырастить масличные культуры, выделить из них масло и провести его химическую конверсию. Для конверсии требуется спирт, который с немалыми энергозатратами требуется производить отдельно. В результате получается сложная, длительная, многостадийная схема производства. Отладка схемы синтеза биодизеля особых трудностей не представляет, но требует высококвалифицированный обслуживающий персонал, поскольку свойства исходного масла будут довольно сильно различаться. Выход продукта определяется в первую очередь содержанием жиров в исходном сырье (зерне) и степенью его извлечения. Немаловажным фактом является также то, что растительные жиры необходимы для производства лакокрасочных материалов и поверхностно-активных веществ, что ограничивает возможность их переработки на топливо. Кроме того, растительные жиры представляют пищевую ценность. Итог. Производство биодизеля является технологически сложным, но достаточно хорошо отлаженным процессом. Положительным моментом технологии биодизеля является возможность переработки в топливо отходов пищевых жиров. Хранение биодизеля не является проблемой. Применение биодизеля возможно во всех установках, использующих дизельное топливо. Расширение производства биодизеля возможно, но есть некоторые принципиальные трудности. Главная проблема – для обеспечения производства биодизеля требуется засаживать значительные площади техническими масличными культурами, что в свою очередь сократит посадки пищевых культур. “Урожай” биодизеля нестабилен, значит использовать его как основное топливо крайне рискованно. Теоретически, биодизель – полностью возобновляемый ресурс. На практике – его возобновляемость ограничена ресурсами почвы и необходимыми посадками пищевых культур.
Спирт – компактный и очень удобный источник тепловой энергии. До сих пор он применяется в качестве жидкого топлива для спиртовок (имеются в виду не лабораторные устройства, а своеобразные минипримусы). Теплотворная способность спирта велика, он очень легко зажигается и тушится. Теплотворная способность может быть сильно снижена, если спирт разбавлен водой, но этого легко избежать. Недостатками спирта являются высокая летучесть, и как следствие необходимость тщательного укупоривания при хранении, и его “пищевое” применение. Самым главным недостатком спирта является его получение. Спирт в настоящее время получают в основном сбраживанием сахаристых веществ. При этом невозможно получить концентрацию спирта выше 18%, и не имеет особого смысла поднимать её уже выше 15%. Как следствие, для получения топливного спирта требуется перегонка. Теплота испарения спирта достаточно велика, теплоёмкость воды тоже. Процесс перегонки будет очень энергозатратным. Обычно технический спирт перегоняется с использованием подручных источников тепловой энергии, чаще всего лигнина. Второй проблемой получения спирта является утилизация биомассы дрожжей и остатков спиртовой барды. Оба этих отхода представляют биологическую опасность и требуют наличия специальной станции очистки и нейтрализации. Итог. Производство спирта является хорошо отлаженным, хотя энергоёмким процессом. Хранение спирта не является проблемой. Применение топливного спирта ограничено маломощными компактными тепловыми установками бытового назначения. Применение спирта как жидкого топлива для ДВС возможно, хотя и нецелесообразно, поскольку теплотворная способность спирта значительно уступает нефтепродуктам. Расширение производства топливного спирта не имеет смысла, так как технологически проще сжигать исходную сахаристую биомассу. Теоретически, спирт – полностью возобновляемый ресурс, однако на практике его производство требует сахаристых веществ, которые могут представлять пищевую ценность. Немалую проблему представляет нецелевое использование спирта.
РП 20 Новые типы двигателей. Исследователи из Университета Пердью, проводящие работы под руководством Грегори Шейвера, предлагают исключить из конструкции ДВС механизм, связывающий коленчатый вал с распределительным. При этом управление впускными и выпускными клапанами будет возложено на специальную электронную систему, в режиме реального времени отслеживающую процессы, протекающие в двигателе. Подобная система, как предполагается, позволит очень точно подстраивать время открытия и закрытия клапанов, что должно положительно отразиться на коэффициенте полезного действия силовой установки. Соответственно, сократятся расход топлива и выбросы вредных газов в атмосферу. Впрочем, в настоящее время новая система управления клапанами двигателя внутреннего сгорания существует лишь в виде экспериментальной компьютерной модели. Ученым еще предстоит создать специализированное программное обеспечение, которое позволит бортовому компьютеру автомобиля быстро и точно реагировать на информацию, поступающую от датчиков двигателя.
Роторно-волновой двигатель Отконструкции двигателя плавно переходим к рассмотрению рабочего процесса Двухгипотрохоидного РВД, где двухзаходный корпус работает в совокупности с однозаходным ротором, а заключается он в следующем. Как только вал отбора мощности начинает совершать вращательные движения в полости, находящиеся между винтовыми каналами ротора и корпуса, в компрессорном отсеке, начинает засасываться воздух. Так как мы рассматриваем совместную работу двухзаходного корпуса и однозаходного ротора, то за один оборот вала отбора мощности в комперссорный отсек будет попадать две порции воздуха. После того как воздух был захвачен и отсечен от окружающей среды, он направляется по винтовому каналу в камеру сгорания, испытывая всестороннее сжатие. Это обусловлено тем, что высота винтовых каналов ротора и корпуса уменьшается, приближаясь к камере сгорания. После того как воздух прошел стадию сжатия он поступает непосредственно в камеру сгоранию, одновременно с этим происходит впрыск топлива. Для поджигания горючей смеси в камере сгорания предусмотрена свеча, правда, она необходима только для первого воспламенения. Так как в дальнейшем сжигание смеси будет происходить только за счет горячих газов, оставшихся в камере сгорания. После того как произошло превращения топливной смеси в горячий газ, последний направляется в винтовые каналы расширительного отсека, имея в своем арсенале огромное давление и температуру. Расширительная камера представляет собой полную противоположность компрессорной камере - высота каналов по ходу движения газов у нее только увеличивается. За счет этого и происходит полезная работа, так как, расширяясь, газы, заставляют вращаться ротор. Правда часть полученной мощности теряется при сжатии очередной порции воздуха необходимой для "огненного сердца".
Достоинства роторно-волнового двигателя. Следует сказать о том, что выше мы рассмотрели наиболее упрощенную конструкцию роторно-волнового двигателя. Существуют двигатели такого типа с пятизаходным корпусом и четырехзаходным ротором. Причем такие многозаходные конструкции могут играть роль редукторов, так как при четырех обкатываниях ротора по винтовой поверхности корпуса выходной вал совершит только один полный оборот. То есть сам двигатель позволяет поднять крутящий момент в четыре раза, что согласитесь не так уж и мало. Еще одно преимущество двигателя скрывается в минимальном количестве пар трения. Фактически трение присутствует только в подшипниках, на которых закреплен вал отбора мощности да в ШРУСе. А как же потери связанные с тем, что ротор обкатывается по корпусу, спросите вы? Эти потери просто отсутствуют, волны ротора "расходятся" на минимально возможном расстоянии с волнами корпуса. К достоинствам следует отнести и малую массу такого типа двигателей. Ведь посмотрев на схему, вы не обнаружите ни газораспределительного механизма, ни тяжелого маховика, ни коленчатого вала. Так как ротор сам по себе является простейшим газораспределительным механизмом, а маховик роторно-волновому двигателю не нужен, потому что в нем просто-напросто отсутствует знакопеременное движение. Благодаря малому количеству деталей и их небольшой массе роторно-волновой двигатель способен развивать обороты в диапазоне от 3000 до 30000 об/мин. О всеядности этого двигателя поговорить следует отдельно. Ведь в принципе высокооктановое топливо роторно-волновому двигателю необходимо только в момент запуска, как только камера сгорания прогреется, то в нее можно фактически подавать любую горючую жидкость, главное чтобы в процессе горения выделялись горячие газы необходимые для вращения ротора.
Двигатель Кушуля В современном мире стало модно быть, экологически чистым. Буквально все твердят об экологической чистоте. Первым делом этот вопрос сказался на автомобильном транспорте, не даром большинство современных автомобилей соответствуют нормам Евро 4. Даже в нашей природа не любивой стране были введены нормы Евро 2. Деньги на совершенствование экологической безопасности автомобилей тратятся огромные, они идут на совершенствование систем впрыска, разработку новейших нейтрализаторов, а так же производство новейших видов топлива. Обо всем выше сказанном знают, наверное, многие, а вот о том, что разработкой экологически чистого двигателя в 60-х годах прошлого столетия занимался профессор Кущуль работающий в Ленинградском институте авиа ционного приборостроения, знают единицы
Двигатель, построенный профессором при первом взгляде, напоминал обычный 6-ти цилиндровый V образный двигатель с малым углом развала цилиндров. Но это только при первом взгляде. На самом деле были и кардинальные отличия. Двигатель состоял: из хорошо знакомых нам поршней 1,2, шатунов не стандартной конструкции - 3,4, маховика - 5, блока цилиндров 6. Отличительной особенностью данного двигателя было перепускное окно 7, соединяющее между собой параллельные цилиндры.
Для того чтобы понять все достоинства и недостатки двигателя Кушуля давайте рассмотрим его рабочий процесс. Впуск - поршни, как и на "обычном" двигателе идут вниз, но вся разница в том, что один цилиндр "питается" сильно переобогащенной топливно-воздушной смесью, а второму перепадает только чистый воздух и ни грамма топлива. Сжатие - поршни идут вверх, сжимая находящееся внутри цилиндров "добро". Причем поршни идут с небольшой разницей, первый впереди второго на 20-30 градусов. То есть когда в первом цилиндре происходит зажигание топливно-воздушной смеси, поршень 2 находится в 30-40 градусах от в.м.т.. Рабочий ход - поршень 1 начинает движение вниз под действием расширяющихся газов, в то время как поршень 2 еще продолжает свое движение вверх и сжимает находящийся в цилиндре воздух. Через некоторое время поршни выстроятся "в линию", и давление над поршнями 1 и 2 будет иметь примерно одинаковое значение. Но рабочий ход продолжается и поршень 1 движется вниз, давление горячих газов над ним при этом уменьшается, а поршень 2 все еще продолжает двигаться вверх и сжимать находящийся в цилиндре воздух. Из-за большой разницы давлений, воздух, находящийся во втором цилиндре начинает перетекать в первый через перепускное окно с огромной скоростью. Новая порция воздуха позволяет полностью сгореть топливу, попавшему в первый цилиндр. После того как поршень 2 прошел в.м.т. в нем так же начинается рабочий ход. Горячие газы в этот момент времени одновременно воздействуют на два поршня сразу. Выпуск - открываются выпускные клапаны, оба поршня идут вверх, выбрасывая в атмосферу продукты сгорания, все как у обычного двигателя, но с одной оговоркой. Процесс выпуска у двигателя Кушуля не очень то и громогласен, виной всему низкое давление отработанных газов - топливо попало в один цилиндр, а расширение горячих газов произошло в двух. Кстати говоря, здесь прослеживается и еще одно достоинство этого двигателя - достаточно высокий КПД, так как энергия горячих газов максимально возможно использована в недрах мотора, а выброс отработанных газов происходит при относительно низком давлении и температуре. Главный козырь этого двигателя, ради чего он в принципе и создавался, низкий выброс вредных веществ, благодаря наиболее полному сгоранию топлива. К преимуществам можно так же отнести возможность работы на различных видах топлива и экономичность. Как всегда не обошлось и без ложки дегтя. Все недостатки "вылезли" в процессе ходовых испытаний построенного Кушулем двигателя, который был имплантирован в "тело" легендарной "Волги". Недостатков было не много, но они были достаточно существенны. Первое - большая масса агрегата, с ней пытались бороться, применяя облегченные детали, но срок их службы бал значительно меньше чем у массивных. Второе - несбалансированная работа двигателя, так как в каждый момент времени работало по два цилиндра, то двигатель был аналогичен трехцилиндровому мотору. Балансионный вал в конструкции этого двигателя предусмотрен не был, хотя сейчас практически все трехцилиндровые двигатели работают в паре с "балансиром". Как и в других случаях, конструкция этого двигателя не "пошла" по технологическим причинам. Обычный двигатель был намного проще в производстве, чем двигатель Кушуля. А как все тогда хорошо начиналось.
Роторно-поршневой дизель. О роторно-поршневых двигателях Ванкеля я думаю, слышали многие. Свою известность в нашей стране этот тип двигателей получил, благодаря двум автомобильным компаниям - это "ВАЗ" и "Mazda". Хотя двигать первой фирмы является, честно говоря, копией двигателя второй. "Mazda" безусловно пролила много пота и крови доводя конструкцию роторно-поршневого двигателя до совершенства, и ей, следует сказать, это удалось сделать. Хотя если заглянуть в историю, то в роторно-поршневом буме, который был примерно сорок лет назад, поучаствовали, наверное, все компании, которые хоть как-то были связаны с разработкой двигателей. В этот период было сделано очень много интересных роторно-поршневых двигателей. Об одном из них мы с вами и поговорим - это роторно-поршневой дизельный двигатель, сконструированный знаменитой компанией "Роллс-Ройс".На рисунке показан двухступенчатый роторно-поршневой дизель "Роллс-Ройс". Основой для двигателя служил корпус 8 в котором находилось две рабочие полости. В полости 3 был расположен ротор ступени высокого давления 5, а в полости 1 - ротор ступени низкого давления 7. Кроме того, что роторы имели разный размер, один был меньше другого в три раза, они еще отличались и формой рабочей поверхности - маленький имел специальные выемки, большой же этим похвастаться не мог. Оба ротора синхронно вращались в одном направлении, так как были связанны шестеренчатой передачей. Вал отбора мощности состыковывался с эксцентриковым валом ротора 7. В корпусе имелись две полости - 2,6, которые соединяли между собой ступени высокого и низкого давления, а так же два окна - 9 и 10, соответственно выпускное и впускное. Форсунка 4 находилась в верхней части корпуса и подавала "тяжелое" топливо в ступень высокого давления. Этот двигатель работал следующим образом. Ротор 7 своей гранью отсекал от окружающей среды порцию воздуха, попавшую в секцию низкого давления через впускное окно 10. Затем воздух перемещался по каналу 2 в секцию высокого давления, испытывая небольшое сжатие, но лишь до того момента пока грань ротора 5 не пересекала перепускной канал. После того как воздух оказался в полости между ротором 5 и корпусом 8 он испытывал сильное всестороннее сжатия и постепенно переносился в рабочую зону форсунки 4. После впрыска топлива в предварительно сжатый воздух, происходило сгорание. Образовавшиеся газы расширялись лишь в секции высокого давления, но только до тех пор, пока грань ротора 5 не открыла доступ к перепускному каналу 6. После этого расширение уже происходило в двух секциях, до того момента пока грань ротора 7 не открывала выпускное окно 9. Многие из вас наверняка зададутся вопросом: " А для чего необходимо было делать двигатель двухсекционным?" Двухсекционность в первую очередь была необходима, для того чтобы организовать дизельный цикл в роторно-поршневом двигателе. Во-вторых, было в два раза уменьшено давление приходящиеся на эксцентриковые валы роторов, соответственно это дало увеличение ресурса двигателя. При конструировании этого необычного двигателя компанией "Роллс-Ройс" было решено громадное количество технических задач. Большие проблемы были связаны с подбором идеальной формы выемок выполненных в рабочей поверхности ротора ступени высокого давления. Много времени заняли вопросы, связанные с подшипниками ротора и радиальными уплотнениями. Так как в дизельном двигатели нагрузки на эти элементы намного больше, чем, в двигателе, работающем на бензине. После того как двигатель окончательно был доведен до ума, фирме "Роллс-Ройс" пришлось сделать трудное для себя решение. А именно - закрыть этот проект. Так как двигатель хоть и радовал своими положительными чертами, сюда можно отнести все плюсы дизельных двигателей и прибавить компактность Р.П.Д., но был достаточно сложен в производстве, имел высокую себестоимость и что самое важное малый ресурс.