Для явной реализации интерфейсного метода могут быть две причины. Во-первых, когда интерфейсный метод реализуется с указанием его полного имени, то такой метод оказывается доступным не посредством объектов класса, реализующего данный интерфейс, а по интерфейсной ссылке. Следовательно, явная реализация позволяет реализовать интерфейсный метод таким образом, чтобы он не стал открытым членом класса, предоставляющего его реализацию. И во-вторых, в одном классе могут быть реализованы два интерфейса с методами, объявленными с одинаковыми именами и сигнатурами. Но неоднозначность в данном случае устраняется благодаря указанию в именах этих методов их соответствующих интерфейсов. Рассмотрим каждую из этих двух возможностей явной реализации на конкретных примерах.
В приведенном ниже примере программы демонстрируется интерфейс IEven, в котором объявляются два метода: IsEven () и IsOdd (). В первом из них определяется четность числа, а во втором — его нечетность. Интерфейс IEven затем реализуется в классе MyClass. При этом метод IsOdd () реализуется явно.
// Реализовать член интерфейса явно, using System;
interface IEven { bool IsOdd(int x); bool IsEven(int x);
}
class MyClass: IEven {
// Явная реализация. Обратите внимание на то, что // этот член является закрытым по умолчанию, bool IEven.IsOdd(int x) { if((x%2)!= 0) return true;
Else return false;
}
// Обычная реализация, public bool IsEven(int x) {
IEven о = this; // Интерфейсная ссылка на вызывающий объект, return!о.IsOdd(х);
}
}
class Demo {
static void Main() {
MyClass ob = new MyClass(); bool result;
result = ob.IsEven (4);
if(result) Console.WriteLine("4 — четное число.");
// result = ob.IsOdd(4); // Ошибка, член IsOdd интерфейса IEven недоступен
// Но следующий код написан верно, поскольку в нем сначала создается // интерфейсная ссылка типа IEven на объект класса MyClass, а затем по // этой ссылке вызывается метод IsOdd().
IEven iRef = (IEven) ob; result = iRef.IsOdd(3);
if(result) Console.WriteLine("3 — нечетное число.");
}
}
В приведенном выше примере метод IsOdd () реализуется явно, а значит, он недоступен как открытый член класса MyClass. Напротив, он доступен только по интерфейсной ссылке. Именно поэтому он вызывается посредством переменной о ссылочного типа IEven в реализации метода IsEven ().
Ниже приведен пример программы, в которой реализуются два интерфейса, причем в обоих интерфейсах объявляется метод Meth (). Благодаря явной реализации исключается неоднозначность, характерная для подобной ситуации.
interface IMyIF_A { int Meth(int x);
}
interface IMyIF_B { int Meth(int x);
}
// Оба интерфейса реализуются в классе MyClass. class MyClass: IMyIF_A, IMyIF_B {
// Реализовать оба метода Meth() явно, int IMyIF_A.Meth(int x) { return x + x;
}
int IMyIF_B.Meth(int x) { return x * x;
}
// Вызывать метод Meth() по интерфейсной ссылке. public int MethA(int x){
IMyIF_A a_ob; a_ob = this;
return a_ob.Meth(x); // вызов интерфейсного метода IMyIF_A
}
public int MethB(int x){
IMyIF_B b_ob; b_ob = this;
return b_ob.Meth(x); // вызов интерфейсного метода IMyIF_B
}
}
class FQIFNames {
static void Main() {
MyClass ob = new MyClassO;
Console.Write("Вызов метода IMyIF_A.Meth(): ");
Console.WriteLine(ob.MethA(3));
Console.Write("Вызов метода IMyIF_B.Meth(): ");
Console.WriteLine(ob.MethB(3));
}
}
Вот к какому результату приводит выполнение этой программы.
Вызов метода IMyIF_A.Meth(): 6 Вызов метода IMyIF_B.Meth(): 9
Анализируя приведенный выше пример программы, обратим прежде всего внимание на одинаковую сигнатуру метода Meth () в обоих интерфейсах, IMyIF_A и IMyIF_B. Когда оба этих интерфейса реализуются в классе MyClass, для каждого из них в отдельности это делается явно, т.е. с указанием полного имени метода Meth (). А поскольку явно реализованный метод может вызываться только по интерфейсной
ссылке, то в классе MyClass создаются две такие ссылки: одна — для интерфейса IMyIF_A, а другая — для интерфейса IMyIF_B. Именно по этим ссылкам происходит обращение к объектам данного класса с целью вызвать методы соответствующих интерфейсов, благодаря чему и устраняется неоднозначность.
Выбор между интерфейсом и абстрактным классом
Одна из самых больших трудностей программирования на C# состоит в правильном выборе между интерфейсом и абстрактным классом в тех случаях, когда требуется описать функциональные возможности, но не реализацию. В подобных случаях рекомендуется придерживаться следующего общего правила: если какое-то понятие можно описать с точки зрения функционального назначения, не уточняя конкретные детали реализации, то следует использовать интерфейс. А если требуются некоторые детали реализации, то данное понятие следует представить абстрактным классом.
Стандартные интерфейсы для среды.NET Framework
Для среды.NET Framework определено немало стандартных интерфейсов, которыми можно пользоваться в программах на С#. Так, в интерфейсе System. IComparable определен метод CompareTo (), применяемый для сравнения объектов, когда требуется соблюдать отношение порядка. Стандартные интерфейсы являются также важной частью классов коллекций, предоставляющих различные средства, в том числе стеки и очереди, для хранения целых групп объектов. Так, в интерфейсе System. Collections. ICollection определяются функции для всей коллекции, а в интерфейсе System.Collections. IEnumerator — способ последовательного обращения к элементам коллекции. Эти и многие другие интерфейсы подробнее рассматриваются в части II данной книги.
Структуры
Как вам должно быть уже известно, классы относятся к ссылочным типам данных. Это означает, что объекты конкретного класса доступны по ссылке, в отличие от значений простых типов, доступных непосредственно. Но иногда прямой доступ к рбъектам как к значениям простых типов оказывается полезно иметь, например, ради повышения эффективности программы. Ведь каждый доступ к объектам (даже самым мелким) по ссылке связан с дополнительными издержками на расход вычислительных ресурсов и оперативной памяти. Для разрешения подобных затруднений в C# предусмотрена структура, которая подобна классу, но относится к типу значения, а не к ссылочному типу данных.
Структуры объявляются с помощью ключевого слова struct и с точки зрения синтаксиса подобны классам. Ниже приведена общая форма объявления структуры:
struct имя: интерфейсы {
II объявления членов
}
где имя обозначает конкретное имя структуры.
Одни структуры не могут наследовать другие структуры и классы или служить в качестве базовых для других структур и классов. (Разумеется, структуры, как и все остальные типы данных в С#, наследуют класс obj ect.) Тем не менее в структуре можно реализовать один или несколько интерфейсов, которые указываются после имени структуры списком через запятую. Как и у классов, у каждой структуры имеются свои члены: методы, поля, индексаторы, свойства, операторные методы и события. В структурах допускается также определять конструкторы, но не деструкторы. В то же время для структуры нельзя определить конструктор, используемый по умолчанию (т.е. конструктор без параметров). Дело в том, что конструктор, вызываемый по умолчанию, определяется для всех структур автоматически и не подлежит изменению. Такой конструктор инициализирует поля структуры значениями, задаваемыми по умолчанию. А поскольку структуры не поддерживают наследование, то их члены нельзя указывать как abstract, virtual или protected.
Объект структуры может быть создан с помощью оператора new таким же образом, как и объект класса, но в этом нет особой необходимости. Ведь когда используется оператор new, то вызывается конструктор, используемый по умолчанию. А когда этот оператор не используется, объект по-прежнему создается, хотя и не инициализируется. В этом случае инициализацию любых членов структуры придется выполнить вручную.