Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Фрагмент 3. Моделирование жизненного цикла продукта

ТЕКСТЫ С ФОРМУЛАМИ 13

Фрагмент 1. Позиционные системы счисления

В позиционной системе счисления количественное значение каждой цифры числа зависит от того, в каком месте (позиции или разряде) записана та или иная цифра этого числа. Например, меняя позицию цифры 7 в десятичной системе счисления, можно записать разные по величине десятичные числа, например, 7; 70; 7000; 0,07 и т.д.

В общем случае любое число N в позиционной системе счисления можно представить в виде:

N=ak-1*pk-1+…+a1*p1+a0*p0+a-1*p-1+…+a-n*p-n

где - (k –1)-ая цифра целой части числа N, записанного в системе счисления с основанием p;

- n-ая цифра дробной части числа N, записанного в системе счисления с основанием p;

k - количество разрядов в целой части числа N;

n - количество разрядов в дробной части числа N;

Максимальное число, которое может быть представлено в к разрядах

.

Минимальное число, которое может быть представлено в n разрядах

Имея в целой части числа к разрядов, а в дробной n разрядов, можно записать всего разных чисел.

С учетом этих обозначений запись числа N в любой позиционной системе счисления с основанием p имеет вид:

 

 

Фрагмент2. Формы представления чисел в компьютере

В компьютерах применяются две формы представления двоичных чисел:

  • естественная форма или форма с фиксированной запятой (точкой);
  • нормальная форма или форма с плавающей запятой (точкой).

В естественной форме (с фиксированной запятой) все числа изображаются в виде последовательности цифр с постоянным для всех чисел положением запятой, отделяющей целую часть от дробной.

Если используется система счисления с основанием p при наличии k разрядов в целой части и n разрядов в дробной части числа, то диапазон значащих чисел N при их представлении в форме с фиксированной запятой, определяется соотношением:

Например, при p =2, k =10, n =6 диапазон значащих чисел будет определяться следующим соотношением:

В нормальной форме (с плавающей запятой) каждое число изображается в виде двух групп цифр. Первая группа цифр называется мантиссой, вторая – порядком, причем абсолютная величина мантиссы должна быть меньше 1, а порядок – целым числом. В общем виде число в форме с плавающей запятой может быть представлено в виде:

,

где M – мантисса числа (| M | < 1);

r – порядок числа (r - целое число);

p – основание системы счисления.

Фрагмент 3. Моделирование жизненного цикла продукта

Модель описывает процесс распространения продукта. Изначально продукт никому не известен, и для того, чтобы люди начали его приобретать, он рекламируется. Влияние рекламы можно оценить ее эффективностью, т.е. степенью воздействия на людей. В итоге определенная доля людей приобретает продукт. На дальнейшее распространение продукта начинает влиять не только реклама, но и фактор общения между собой владельцев продукта и потенциальных потребителей. Этот фактор зависит от силы убеждения владельца. Процесс приобретения товара можно рассматривать как поток – «перетекание» потенциальных покупателей в «стан» владельцев. Этот поток тем сильнее, чем больше людей охвачено рекламой и чем больше людей общается с владельцами товара. Естественно, что чем больше людей уже купили товар, тем слабее становится поток, и в конце концов он «иссякает», т.е. приобретение товара заканчивается.

Математическая модель процесса описывается следующей системой алгебро-дифференциальных уравнений:

Здесь:

А - численность населения;

B - эффективность рекламы;

C – частота контактов;

F - сила убеждения;

х - потенциальные покупатели;

y – потребители;

z - интенсивность приобретения продукта;

r - интенсивность приобретения под влиянием рекламы;

s - интенсивность приобретения под влиянием общения.

 

 



<== предыдущая лекция | следующая лекция ==>
Участки насыщения ферромагнетика | Пересечение и объединение прямоугольников.
Поделиться с друзьями:


Дата добавления: 2016-12-06; Мы поможем в написании ваших работ!; просмотров: 304 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Неосмысленная жизнь не стоит того, чтобы жить. © Сократ
==> читать все изречения...

2312 - | 2017 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.