Идея «изолированной прецессии» — логический результат многолетних наблюдений ДеПалмой различных аномальных вращающихся систем — никогда не проверялась в контролируемых лабораторных условиях (по крайней мере в публикациях на Западе сведений нет...) поскольку для проведения соответствующих тестов ему требовалась невесомость. К сожалению, прежде чем Хогленд (используя свои связи в НАСА) смог договориться о проведении практически таких же опытов по теории Брюса на оборудовании НАСА-Льюиcа для испытаний на ударную нагрузку в невесомости, ДеПалма скоропостижно скончался в 1998 г.
Уивительное предсказание ДеПалмы о значительной прецессии вращения которую сегодня можно красиво объяснить при помощи множественных вращательных движений и торсионного взаимодействия, одновременно возникающего в более высоких измерениях, в нашем рассказе еще будет иметь большое значение. Вооружившись экспериментальными данными Бирдена и ДеПалмы, Хогленд приступил к серьезному поиску способа сделать то, что не могли сделать все другие гиперпространственные теории: провести реальное опытное подтверждение своих ключевых положений.
Проверяемая теория
Настоящий научный метод — это то, чего, к сожалению, в современном мире люди просто не понимают, причем не понимают даже многие ученые. История науки изобилует яростными дискуссиями, выраставшими в настоящие войны эгоизма и личных интересов. Однако метод как таковой должен защищать нас от того, чтобы ученые и их теории не стали новой религией и не священниками, он гарантирует, что, если модель нe соответствует новым данным ее отвергают, независимо от того, насколько это задевает чьи-то интересы. Увы, это действует не часто.
Хогленд сразу хотел отделить свою концепцию гиперпространственной физики от более ранних моделей одним особым способом — прогнозированием.
От того, будут ли его новые идеи подтверждены или опровергнуты, зависит, получит ли поддержку его современная версия революционных идей Максвелла. Для этого любая верная научная модель должна давать прогнозы, которые можно проверить опытным путем. К счастью, некоторые тесты гиперпространственной модели предлагались самими наблюдениями. В итоге Хогленд остановился на четырех дополнительных ключевых прогнозах, которые могли бы определить содержится ли в Сидонии «тетраэдральная физика» и может ли быть опровергнута итоговая «гиперпространственная модель». Все эти тесты неизменно имели в основе один, в некотором роде необычный, источник.
Вращательный момент
Сначала Хогленд сосредоточился на аномальном тепловом излучении планет, которое он наблюдал вместе с Тораном. Поскольку в трехмерном пространстве по законам термодинамики Кельвина и Гиббса вся энергия, в конце концов, «вырождается» в беспорядочное движение, а затем «энергия деформации» эфира (вакуума) высвобождается внутри материального объекта, то даже если это сначала проявляется в когерентной форме, в конце концов, она деградирует в простое беспорядочное тепло, которое, в конечном счете, излучается в пространство в виде инфракрасного избытка. В итоге любая энергия, из какого бы источника она ни происходила, выглядит одинаково.
Поэтому Хогленд сосредоточил свое внимание на изначальных астрофизических условиях, при которых этот «максвелловский космический потенциал» может высвобождаться внутри планеты или звезды. Он хотел спрогнозировать определенные признаки, которые однозначно указывали бы на источник излучения энергии как гиперпространственный, противоположный «обычному» трехмерному, эффект.
При изучении аномального инфракрасного излучения сразу же становится понятно: инфракрасный избыток гигантских планет очень хорошо коррелирует с одним общим для всех них параметром — их общей системой «вращательного момента».
В классической физике масса тела и скорость, с которой оно вращается, определяют «вращательный момент» объекта. В гиперпространственной же модели все выглядит немного сложнее, поскольку объекты, находящиеся на расстоянии друг от друга в обычном мире, в четырехмерном мире на самом деле соединены. Таким образом, в гиперпространственной модели что-то всегда добавляется к орбитальному моменту гравитационно привязанных спутников объекта — спутников относительно планет, планет относительно солнц или звезды-компаньона в системах двойных звезд.
В этой связи, как доказывал Хогленд и как следовало из его «бессмысленных» наблюдений математики Сидонии, общий вращательный момент системы был ключом к пониманию того, как на самом деле все действует в нашем трехмерном мире. Это полностью противоречит существующей сегодня теории полей и электромагнетизма, которая рассматривает массу звезды или планеты как наиболее важную характеристику, обуславливающую астрофизическое поведение. Поскольку в основном физики работают с теорией Максвелла в версии Хевисайда, наиболее значимая «сила», которую они могут наблюдать, — это сила тяготения. Поскольку сила тяготения зависит от массы, современные физики полагают, что масса является единственным наиболее значительным аспектом в астрофизическом взаимодействии. Однако при измерении вращательного момента всей Солнечной системы нас ожидает сюрприз (рис. 2-6).
Выясняется, что Юпитер, имеющий менее 1% массы в Солнечной системе, каким-то образом обладает 60% вращательного момента, в то время как Солнце, обладающее 99% массы, имеет только 1% вращательного момента. Если общепринятые взгляды на Солнечную систему верны, то на самом деле вращательный момент должен быть распределен в зависимости от массы. В реальности же все происходит «с точностью до наоборот». Такое отличие теории от реальности пытались объяснить при помощи различных идей, в том числе и того, что Солнце каким-то загадочным способом «передает» свой вращательный момент планетам, однако в таких версиях есть целый ряд вопросов, разрешить которые теоретики мироздания пока не могут.
Когда Хогленд начал изучать то, какую роль может играть вращательный момент в его развивающейся теории, он провел одну важную аналогию — общая связь, объединяющая все объекты, на которых распространяется действие «воплощенной в Сидонии тетраэдральной модели», от планет до Солнца, в своей основе, вероятно, имеет взаимосвязь между вращательным моментом и магнитным полем. До принятия этой сложной «самовозбуждающейся динамо-теории» (с внутренней циркуляцией проводящих «жидкостей» как механизмом общего планетарного и звездного магнетизма) предлагалась другая, совершенно эмпирическая теория — удивительно простая связь наблюдаемого общего вращательного момента объекта и проистекающего из него магнитного диполя.
Рис. 2-6. Общий вращательный момент Солнечной системы. Несмотря на то что Солнце обладает 99% массы Солнечной системы, оно имеет менее 1% общего вращательного момента (энергия вращения по орбите и собственного вращения); остаток (99%) приходится на планету — в основном на Юпитер.
Названная «гипотезой Шустера» (по имени сэра Артура Шустера (1851-1934), первым отметившего эту взаимосвязь; его эмпирическое открытие и даже само имя необъяснимым образом исчезли из всей литературы НАСА по планетарному магнетизму), эта теория успешно предсказала силу магнитного поля (Блэкетт 1947, Уорик 1971) Земли, Солнца и огромное поле Юпитера (в 20 000 раз больше земного дипольного момента). Прогноз Шустера, сделанный за 60 лет до того, как космические аппараты «Пионер-10» и 11 в 1973-1974 годах подтвердили его (Уорик 1976), в 1971 году заставили Уорика так прокомментировать предсказательную силу «гипотезы Шустера: «Динамо-теория еще не дала верного прогноза ни об одном космическом поле. Ее использование сегодня основывается на предположении, что ни одна другая теория не является более соответствующей наблюдениям».
И в самом деле, после того как «Маринер-10» обнаружил магнитное поле вокруг Меркурия, что не только соответствовало гипотезе Шустера, но и прямо противоречило динамо-теории, даже Карл Саган признал, что существовала необходимость для серьезного пересмотра научного взгляда на планетарный магнетизм39.
Взяв за основу предположение Шустера, сделанное в 1912 году, Хогленд и Торан графически нанесли современные параметры вращательного момента и наблюдаемого магнитного дипольного момента (данные взяты для всех планетарных объектов, которые посещались космическими аппаратами с магнитометрами) и обнаружили, что гипотеза Шустера подучила подтверждение — за исключением Марса (который лишился магнитного поля в результате недавней катастрофы, речь о которой пойдет позднее) и Урана (см. ниже). Очевидно, что динамо-теория не дала ни одного верного прогноза планетарного магнитного поля, а теорема Шустера оказалась верной почти во всех случаях.
Уран, являющийся единственным исключением из теоремы Шустера, на самом деле можно считать исключением, подтверждающим правило. Уран имеет почти такой же период вращения, как и Нептун, и по определению должен иметь магнитное поле почти такой же силы. Однако сила магнитного поля Нептуна вдвое меньше земной, в то время как у Урана оно равно двум третям земного. Если теорема Шустера верна, магнитосферы двух планет должны иметь почти одинаковую интенсивность. В реальности же они имеют соотношение около двух к одному.
Уран, однако, является исключением и по многим другим причинам — угол его наклона составляет почти 90° к вертикали Солнца, что указывает на то, что в недавнем прошлом на нем произошло смещение полюсов, которое и стало причиной несхожести его характеристик с другими планетами. Если это произошло в недавнем геологическом прошлом, после этого логически должен следовать период несоответствия теореме Шустера. Учитывая, что также имелся гиперпространственный фактор (в соответствии с опытами по сферической прецессии ДеПалмы) который мог влиять на настоящее состояние Урана, и поскольку наблюдения Шустера срабатывали в случаях с другими планетами, представляется вероятным, что исключительности Урана имеется еще одна не до конца понятая причина. Но очевидно, что если теорема Шустера верна в семи из девяти случаев, а динамо-теория — ни в одном, то первая является более предпочтительной.
Наблюдаемая корреляция вращательного момента и магнитного дипольного момента навела Хогленда на мысль провести такую же простую связь и в его собственной работе. Рассматривая взаимоотношение между аномальным инфракрасным излучением и вращательным моментом, он выяснил, что оно также точно соответствует общему системному вращательному моменту каждой из планет. Если графически отобразить соотношение общего вращательного момента совокупности объектов, таких как излучающие планеты нашей Солнечной системы (вместе с Землей и Солнцем), и общее количество внутренней энергии, которую каждый объект излучает в космос, результат будет ошеломляющим (рис. 2-7).
Рис 2-7. Сравнение вращательного момента со светимостью Солнечной системы.
Чем большим общим системным вращательным моментом обладает планета (или любое небесное тело), тем больше аномальной энергии она может производить (на самом деле энергия — наподобие «аномальной энергии», которую ДеПалма наблюдал в своих экспериментах с вращающимся шаром — «проводилась» внутрь вращающейся массы из более высокого измерения, через трехмерное «эфирно-торсионное поле»).
В гиперпространственной модели физики это простое, но в то же время обладающее большой энергией взаимоотношение, вероятно, является эквивалентом формулы Е=МС2: общая внутренняя светимость небесного объекта, вероятно, зависит от только одного физического параметра: светимость равняется общему системному вращательному моменту (объекта плюс все спутники). Это означает, что количество энергии, которое излучает данный объект, определяется силой, прилагаемой к нему через гиперпространство, а эта гиперпространственная энергия в нашем трехмерном мире измеряется как вращательный момент. Графически вся эта зависимость выглядит вполне очевидной (рис. 2-7). Все планеты на графике ведут себя правильно, за исключением Солнца. Создается впечатление, что оно каким-то образом теряет значительную часть своего вращательного момента.
Принято считать, что Солнце и все похожие на него звезды — это огромные ядерные печи, топливо для которых создается распадом материи на шаровые молнии энергии. Этот процесс обеспечивает синтез атомов внутри Солнца. Следовательно, он должен создавать побочные продукты. Одним из таких побочных продуктов синтеза является нейтрино, субатомные частицы, не имеющие электрического заряда. Однако эксперименты по измерению потока нейтрино от Солнца показали, что Солнце не излучает того количества нейтрино, которое должно было бы излучать пропорционально излучаемой энергии в соответствии с обычной моделью. Если энергия Солнца вырабатывается в результате «термоядерной реакции» (в соответствии со стандартной моделью), то регистрируемый «дефицит нейтрино» составляет до 60%. Еще более удивительно, что некоторые типы первичных нейтрино (которых подсчитывают для того, чтобы объяснить основной объем реакций синтеза внутри Солнца, основываясь на лабораторных экспериментах) просто отсутствуют.
Теоретические поправки последнего времени к существующей квантовой теории в совокупности с данными новых нейтрино-детекторов должны, вероятно, вновь изменить данные по наблюдаемому количеству нейтрино (и «разновидностям») и таким образом привести наблюдаемый «нейтрино-дефицит» Солнца в соответствие с исправленной теорией, У нас, однако, есть подозрение, что такие сомнительные манипуляции с оригинальной стандартной нейтринно-солнечной моделью — созданной, что примечательно, до того, как аномальный солнечный нейтрино-дефицит был открыт при помощи наблюдений — является своего рода «академическим шулерством»...
По иронии, объяснение очевидного отклонения Солнца от стандартной модели содержится в удивительном отклонении его кривой на нашем графике вращательного момента/светимости. В гиперпространственной модели первичный источник энергии Солнца, как и планет, должен зависеть от общего вращательного момента — собственного «спина» плюс общий вращательный момент планетарных масс на орбите. Как упоминалось выше, несмотря на то, что Солнце обладает 98% массы Солнечной системы, оно имеет всего 2% общего вращательного момента. Все остальное принадлежит планетам. Таким образом, если гиперпространственная модель верна, прибавляя момент их части к вращательному моменту Солнца, мы должны увидеть, что на графике Солнце должно следовать той же линии, что и планеты, от Земли до Нептуна. Однако это не так.
Самое очевидное объяснение этой дилеммы — это то, что гиперпространственная модель просто ошибочна. Менее очевидная версия — мы что-то упустили, например, дополнительные планеты.
Пытаясь объяснить недостающий вращательный момент, Хогленд нашел первый доказуемый прогноз гиперпространственной модели. Если поставить еще одну большую планету (или пару планет поменьше) за Плутон (расстояние. в несколько большее, чем от Земли до Солнца), общий вращательный момент Солнца войдет в график до конечного пересечения с линией (в процентном отношении — около 30% от внутренней энергии, которая должна производиться реальной термоядерной реакцией). Это дает отдельный повод положить, что современное руководство по расчетам вращательного момента Солнца является неполным по одной очевидной причине: мы еще не обнаружили все основные планеты Солнечной системы.
Поэтому первым прогнозом гиперпространственной модели стало то, что в конце концов при помощи наблюдений будет найдена либо одна большая, либо две маленьких планеты Солнечной системы, обращающихся в одном направлении. В обоих случаях эти наблюдения в определенных границах позволят Солнцу занять его предсказанное положение на графике и подтвердят взаимосвязь между вырабатываемой энергией и вращательным моментом. Связь между вращательным моментом и вырабатываемой энергией имеет и еще один, широкий смысл. Если она действительно существует, это означает, что представления об иерархии Солнечной системы не соответствуют реальности. В гиперпространственной модели хвост (планеты и луны) машет собакой (солнцем) — предположение, которое имеет далеко идущие последствия.
Подтверждение?
Следующим этапом проверки этого аспекта модели был поиск свидетельства того, что, возможно, может существовать еще один член нашей Солнечной системы. Астрономы многие годы вели поиск «Планеты X». Причиной исследований являлся факт, что нечто, предположительно большая неизвестная планета, оказывало влияние на орбиты Нептуна и Урана. Поиски этого «возмутителя» в итоге привели к открытию Плутона, однако никакой большой планеты так и не было найдено, по крайней мере официально.
При этом было сделано несколько очень интересных «неофициальных» открытий, которые могли иметь отношение к этому прогнозу. В 1982 г. на первой полосе «Вашингтон пост»40 опубликовала интервью с д-ром Джерри Нойгебауэром об объекте, обнаруженном на Орионе инфракрасным спутником IRAS примерно за 50 миллиардов миль от Земли. Этот объект по своим параметрам точно соответствовал прогнозу Хогленда. На сегодняшний день не имеется ни последующих наблюдений этого объекта, ни документов по нему. На все запросы д-р Нойгебауэр отвечает, что цитата «вырвана из контекста. Я ничего не знаю ни об этом, ни о последующих наблюдениях».
Такой ответ Нойгебауэра является уклонением от истины. Кто из нас мог бы заявить, что он ничего не знает о предмете, о котором он говорил в статье в «Вашингтон пост»? Если прочитать оригинал интервью и статьи, полностью основанной на информации Нойгебауэра и д-ра Джеймса Хаука, становится понятно, что они говорят неправду. В статье описывается небольшой темный объект размером с Юпитер, находящийся в 50 миллиардах миль от Земли. На этом расстоянии (около 537 астрономических единиц) объект, вероятно, должен быть коричневым карликом, телом, имеющим размер примерно как у Юпитера, однако в 50 раз тяжелее. Далее в статье говорится, что для визуального наблюдения за объектом было задействовано «два различных телескопа» — хотя Нойгебауэр утверждает, что последующих наблюдений никогда не проводилось. Очевидно, что на первые результаты наблюдений IRAS опущен занавес отрицания.
В 1999 г. в ряде новостных заметок вновь приводились свидетельства существования еще одного члена Солнечной системы, на этот раз в созвездии Стрельца, точно напротив Ориона на небесной сфере41. Этот объект предположительно имел тот же размер, что и объект, обнаруженный IRAS, однако на более дальнем расстоянии — между 25 000 и 32 000 астрономических единиц. На его существование указывали орбиты долгопериодических комет. Оба факта доказывают, что предсказание Хогленда о существовании еще одной планеты (планет) на большом расстоянии от Земли, как минимум, опирается на несколько наблюдений. Отличительной чертой модели Хогленда от других теорий Планеты X является специальное предсказание того, что объект, о котором идет речь (если его существование в конце концов официально подтвердят), будет обладать вращательным моментом, достаточным для того, чтобы сдвинуть Солнце на причитающееся ему место на графике. Однако что можно будет спросить, когда НАСА все же обнаружит нашу недостающую основную десятую планету (хотя Плутон недавно понизили до просто «объекта Солнечной системы»), если нам об этом сообщат? Целый ряд «красных» исследователей давно предсказали существование Планеты X, и если согласиться, что она найдена, это даст подтверждение их моделям и теориям. Если копнуть глубже, становится очевидным, что причины, побуждающие НАСА «закрыть рот» Нойгебауэру, имеют гораздо большее отношение к политике (как обычно), чем к науке.
Инфракрасная переменная
Следующий тест гиперпространственной модели также основывается на наблюдении инфракрасного излучения. Если наблюдения Хогленда и Шустера были правильными и между светимостью, интенсивностью магнитного поля и вращательным моментом существует прямая связь,: то должны быть определенные следствия. Поскольку в модели Хогленда предполагается, что инфракрасное излучение имеет гиперпространственную природу, т.е. связано с геометрией высокой размерности, то орбитальные изменения в конфигурации «системы» (постоянно движущиеся планеты и луны Солнечной системы) по определению должны вести к переменной выработке энергии — как настройка реостата для контроля силы света. Это является ключевым моментом, поскольку обычная физика по привычке заявляет, что выработка энергии планетами является «постоянной», явно затухающей только в течение очень долгого промежутка времени.
Если исходным источником планетарной (или звездной) энергии является вихревое (вращающееся) пространственное напряжение между пространственными измерениями (a-ля Максвелл), то постоянно изменяющаяся модель (и в гравитационном отношении, и в отношении измерения) взаимодействующих спутников на орбитах вокруг основных планет/звезд в сочетании с соответственно изменяющейся геометрической конфигурацией относительно остальных основных планет должна модулировать характер распределения напряжения как постоянно меняющийся, геометрически «искривленный «эфир». В гиперпространственной модели Хогленда эта постоянно меняющаяся гиперпространственная геометрия может извлекать энергию из лежащего в основе всего вращения вихревого эфира, а затем высвобождать ее внутри вещества, вращающихся объектов.
Изначально этот избыток энергии может проявляться в различных формах — в виде сильного ветра, необычной электрической активности, даже в виде усиленной ядерной реакции — однако, в конце концов, он превратится в простой избыток тепла. Из-за основного физического условия резонанса вращения трехмерной массы фактически соединенных планет (звезд) и базового четырехмерного вращения эфира эта выработка избытка энергии должна с течением времени варьироваться, когда меняющаяся орбитальная геометрия «спутников» и основных членов Солнечной системы взаимодействует с первичным спином (и изначальным вихревым эфиром) в фазе и вне ее. По этой причине зависимость от времени этого продолжающегося обмена энергией должна быть главным критерием всего гиперпространственного процесса. Она также должна быть легко определяемой. Все это нужно для измерения мощности инфракрасного излучения Юпитера в различные промежутки времени его прохождения по орбите и в различных положениях относительно других планет. Если гиперпространственная модель верна, инфракрасное излучение Юпитера (и других «газовых гигантов») должно варьироваться в широком диапазоне в зависимости от орбитального положения. В определенное время оно должно превышать каноническую пропорцию два к одному. В остальное время оно должно быть меньше (рис. 2-8).
Рис. 2-8. Выработка варьируемого избытка энергии Юпитера, которая объясняется (в гиперпространственной модели Хогленда — Торана) как непосредственный результат модулированного вида энергии из других пространственных измерений.
История науки насчитывает несколько попыток сделать это. В 1966 и 1969 годах д-р Фрэнк Дж. Лоу с высотного летательного аппарата сделал первые наблюдения аномальной тепло-производительности Юпитера. Лоу, которого считают отцом современной инфракрасной астрономии опубликовал первые результаты, показавшие, что теплопроизводительность Юпитера находится в диапазоне 3-142. Позднее он сделал предположение, которое привело к созданию IRAS, первых инфракрасных космических телескопов, с помощью которых и были сделаны наблюдения, позволившие предположить существование Планеты X в Орионе, о которой шла речь ранее. Три года спустя Лоу произвел дальнейшие наблюдения, которые снизили цифру с 3-1 до 2-1 — разница более чем на 30%, что далеко выходит за пределы допустимой погрешности приборов, использовавшихся в обоих случаях. В 70-х при помощи наземных телескопов цифра была уменьшена еще больше, до соотношения примерно 1,67-1,00, т.е. еще на 30%43. В начале 80-х миссия «Вояжер» в значительной степени подтвердила цифру 1.67. Разночтения данных объяснялись тем, что инструменты были недоработаны, а их показания — приблизительны. Поскольку колебания по данным теплопроизводительности в конце 70-х и начале 80-х в конце кончились на цифре 1,67, все решили, что это и есть точное значение, а предыдущие результаты были аннулированы.
К счастью, после «Вояжера» во внешней области Солнечной системы проводились исследования аппаратами «Галилей» и «Кассини», на которых было оборудование для измерения инфракрасного излучения внешних планет-газовых гигантов. Единственное, что удерживало Хогленда от тестирования этого аспекта модели, была невозможность найти того, кто провел бы измерения, или того, кто опубликовал бы их результаты. Оказалось, что это гораздо более трудная задача, чем можно было предположить. Обращение в университеты, собиравшие и архивировавшие данные инфракрасных исследований обоих космических аппаратов, обнаружило их явное нежелание сотрудничать. Хогленду сказали, что для получения данных для измерений он должен «подтвердить» свое членство в «одобренном» научном центре или университете. Однако поиск в астрофизической реферативной онлайн-базе данных НАСА дает кое-какую интересную информацию. Последний документ — наблюдения, сделанные композитным инфракрасным спектрометром (CIRS) аппарата «Кассини», вероятно, подтверждают прогноз Хогленда44. Группа исследователей обнаружила, что инфракрасное излучение Юпитера не соответствует каноническому со времен «Вояжера» соотношению от 1,67 до 1,00. Поскольку точных данных нет, выдержка сообщает, что «об экваториальном температурном минимуме больше говорили, чем наблюдали его», и что «с большей вероятностью это связано с временными изменениями экваториальных стратосферных температур, о чем сообщается из наземных обсерваторий». Получается, Юпитер не просто демонстрирует переменную теплопроизводительность, что согласуется с моделью Хогленда. Последнее предложение указывает на то, что наземные наблюдения дали тот же результат.
Даже если не заходить уж очень далеко и не запрашивать самые последние инфракрасные снимки Юпитера и других внешних планет, все равно эти результаты являются аномальными для общепринятых моделей, но согласуются с ключевым гиперпространственным прогнозом Хогленда. К сожалению, нам придется подождать публикации данных, прежде чем мы уверенно отнесем этот прогноз к категории «подтвержденных».
Краткосрочные изменения амплитуды
Этот же аспект модели, но в меньшем масштабе, может использоваться и для того, чтобы сделать еще один прогноз. В нашей Солнечной системе все планеты-«гиганты» имеют настоящий эскорт, состоящий из дюжины спутников один или два главных (размером примерно как планета Меркурий) и нескольких других, меньше нашей Луны по массе и диаметру, а также множество малых объектов. Из-за «эффекта рычага» в расчетах вращательного момента даже маленький спутник, движущийся по далекой орбите (или под крутым углом относительно плоскости вращения планеты), может оказывать непропорциональное влияние на уравнение «общего вращательного момента» — достаточно взглянуть на Плутон и Солнце (рис. 2-6).
Дажe сейчас четыре основных спутника Юпитера (общая масса которых составляет около 1/10000 массы самого Юпитера) во время цикла сложного взаимодействия на орбите, как известно, вызывают изменяющееся во времени поведение ряда хорошо известных феноменов Юпитера — включая «аномальные перемещения Большого красного пятна по широте и долготе.
Как сообщил в ООН в 1992 году Хогленд, Большое красное пятно (GRS) — загадочный вихрь, более 300 лет наблюдающийся на пресловутых 19,5° южной широты, с точки зрения геометрии вписанного тетраэдра и проблемы двадцати семи линий — это классический «признак» действия гиперпространственной физики в пределах Юпитера (ниже).
Десятилетия наблюдений за аномальными перемещениями этого Пятна, точно синхронизированными с вполне предсказуемыми движениями самых больших лун Юпитера, открытых Галилеем, ясно указывают, что эти перемещения не являются результатом обычных гравитационных или приливно-отливных взаимодействий, учитывая относительно небольшие массы лун в сравнении с самим Юпитером. Правильнее сказать, они, по всей вероятности следуют моделям Максвелла, Шустера и Уиттекера. Это результат мощной гиперпространственной модуляции от изменяющейся геометрической конфигурации этих спутников. Это длинный рычаг вращательного момента и гармонический торсионный резонанс постоянно изменяющейся вихревой скалярной напряженности (состояние торсионных полей) в недрах Юпитера, который вызывает изменения Большого красного пятна.
Итак, гиперпространственный тест номер три: найти небольшие, кратковременные амплитудные колебания уровней инфракрасного излучения всех планет-гигантов, синхронизированные (как атмосферные движения Большого красного пятна на Юпитере, по-прежнему загадочные, однако явно носящие циклический характер) движением лун по орбитам и их пересечением, и/или движением этих внешних планет относительно других основных членов Солнечной системы.
Подтверждение наличия кратковременных колебаний в выработке инфракрасного излучения на протяжении нескольких часов (или даже дней) — синхронизированных с периодами обращения спутников планет — было бы прекрасным примером того, что все общепринятые объяснения находятся в затруднении, а гиперпространственная модель заслуживает более подробного рассмотрения. Увеличение или уменьшение выработки в течение нескольких лет и десятилетий (как следует из истории наблюдений инфракрасного излучения Юпитера, от Фрэнка Лоу до Кассини) поддержало бы долговременную планетарную модуляцию этого внутреннего высвобождения гиперпространственной энергии. Конечно же, на самом деле обе совокупности модуляций должны происходить одновременно — и которые при наблюдении легко разделить при помощи компьютерный программы наблюдений при условии, что кто-то попытается это сделать.