Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Регулируемые дозвуковые выхлопные устройства




 

Регулируемые сопла дают возможность регулировать работу двигателя. Так при увеличении площади проходного сечения вы­ходного сопла давление газов за турбиной уменьшается, вследст­вие чего перепад давления у тур­бины возрастает. При уменьше­нии же площади проходного се­чения давление газов за турби­ной увеличивается, вследствие чего перепад давления у турбины уменьшается. При неизменном расходе топлива в первом случае происходит увеличение мощности турбины, а следовательно, и обо­ротов двигателя, а во - втором случае — их уменьшение.

Одновременным регулирова­нием площади проходного сече­ния выходного сопла и подачи топлива могут быть улучшена характеристики ТРД, облегчен запуск и улучшена приемистость двигателя. Однако у ТРД, пред­назначенных для сравнительно узкого диапазона скоростей по­лета, регулирование за счет вы­ходного сопла оказывается мало­эффективным. Поэтому в целях упрощения конструкции выход­ные сопла у ТРД часто применяют нерегулируемые. Регулируемые сопла широко применяют на ТРД с форсажными камерами, у которых на нефорсированных и форси­рованных режимах работы за счет изменения проходного сечения сопла параметры газов перед турбиной сохраняются неизменными. Рассмотрим основание схемы регулируемых дозвуковых выходных устройств.

 

Рис.18. Регулируемое сопло с подвижной цент­ральной иглой.

 

Сопло с подвижной центральной иглой (рис 18). При вы­движении центральной иглы в двигателе меняется площадь выход­ного сечения сопла (при выдвижении уменьшается, при вдвижении—увеличивается). Управление иглой производится механиче­ским путем или с помощью гидравлического сервомотора. Применение данного доста­точно простого способа изменения выходного сечения соп­ла ограничено, так как связано с решением трудной проблемы охлаждения самой иглы и механизма управления ею. Кроме того, для получения значи­тельного изменения площади сечения сопла в такой конструкции требуется большое пере­мещение иглы, что влечет за собой увеличение размеров и утяже­ление сопла. Конструктивное решение выполнения регулируемого сопла с подвижной иглой на двигателе РД-10 приведено на (рис.19).

 

Рис.19. Выходное сопло двигателя РД – 10.

Двухстворчатое сопло может иметь различные формы ство­рок в прикрытом положении (Рис.20): плоские, овальные или круг­лые. Преимуществом таких устройств является простота самого сопла и управляющего механизма, а недостат­ком — несколько повышенные гид­равлические потери, определяемые формой поперечного сечения сопла, и неравномерный нагрев, вызываю­щий коробление створок и затрудня­ющий их уплотнение, что ведет к бес­полезной утечке газа.

 

 

Рис. 20. Регулируемое двухстворчатое сопло.

Многостворчатое сопло (Рис.21) создает форму по­перечного сечения струи, близкую к кругу во всех положениях. Малые размеры створок позволяют сделать их достаточно жесткими, что предохраняет от коробления. Силы, действующие на каждую створ­ку, меньше, чем при двухстворчатом сопле. Упрощается конструкция шарниров крепления. Нагрузки от створок более равномерно распре­деляются по периметру заднего фланца. Недостатком такого сопла является необходимость большого числа створок, что увеличивает число стыков и ведет к усложнению механизма управления.

Рис. 21. Многостворчатое сопло.

Створки 4 (Рис.22) шарнирно закреплены на фланце выпускной трубы и под действием перепада давлений прижаты к кольцу 3 управления створками. При перемещении кольца назад выходное сечение сопла увеличивается, при обратном его движении уменьшается.

Основная трудность при создании многостворчатого сопла заклю­чается в обеспечении надежного газового уплотнения стыков между створками. Уплотнение можно осуществить заполнением мест стыков стеклянной ватой, заключенной в эластичный кожух, который при­варен к соседним створкам сопла.

 

 

 

Рис. 22. Регулируемое реактивное сопло:

/- створкизакрыты; //-створки открыты; 1-кожух выпускной трубы;

2-гидро-цилиндр; 3-кольцо управления створками; 4 –створки.

 

Более простым способом уплотнения стыков является такой, при котором полка одной створки входит в продольный паз другой. Надеж­ность уплотнения зависит от величины максимального Ах и минимального А2 перекрытий сечения сопла. Увеличение Ах и А2 при заданной толщине материала уменьшает жесткость полок, что способствует лучшему уплотнению стыка, но с увеличением перекрытия ухудшается теплоотвод от створок и вследствие их деформации могут возникнуть щели в местах стыка створок. Обычно створкам придают коробчатое сечение, что обеспечивает надежное охлаждение створок эжектируемым воздухом и достаточную их жесткость.

На (рис.23) приведена схема и конструктивное выполнение створок такого сопла.

Рис. 23. Створчатое кольцо с эжектором:

а – в положении максимального прикрытия; б – в положении максимального открытия;

в – вид сверху без эжекторных створок; 1 – силовое кольцо; 2, 5 – створки сопла;

3 – створки эжектора; 4 – кольцо; 6 – проушины; 7 – полки.

 

Перемещение кольца управления створками осуществляется при помощи двух или трех силовых гидроцилиндров, поршни которых пе­редвигаются под воздействием гидравлической жидкости. Гидравли­ческая жидкость подается кранами управления через штуцер 5 (Рис. 24) в одну из полостей стакана 8, образованных поршнем 7, при этом один из штуцеров служит для слива смеси из уменьшающейся полости ци­линдра.

Рис. 24. Силовой гидроцилиндр управления створками:

1 - передняя вилка; 2, 10 — контровочные гайки; 3 — гайка; 4— заглушка; 5— шту­цера;

6—резиновые сальники поршня и заглушки; 7—поршень со штоком; 8 — ста­кан;

9 — резиновый сальник штока; 11 — задняя вилка; 12 —резиновые сальники передней вилки.

 

К задней вилке 11крепится кольцо управления створками. Работа гидроцилиндров должна быть тщательно синхронизирована во избежание перекосов кольца управления. Рассмотренный гидроци­линдр обеспечивает только максимальное или минимальное открытие сопла, такие сопла называются двухпозиционными.

 

 

Рис. 25. Силовой гидроцилиндр для трехпозиционного сопла

В настоящее время вместо двухпозиционных сопел применяют соп­ла с несколькими фиксированными положениями и с непрерывным регулированием выходного сечения. В гидроцилиндре для трехпози­ционного сопла, кроме основного поршня 1(рис. 25), установлен пор­шень-упор 2.

Для максимального открытия сопла нужно подать гидравлическую жидкость по каналам 3и 4в полость В, а по каналам 5 и 6слить ее из полостей А и Б. Минимальное прикрытие сопла достигается подачей гидравлической жидкости по каналу 6в полость Би сливом ее из по­лостей А и В.

Промежуточное положение створок обеспечивается подачей жидкос­ти в полости А и Б по

каналам 5 и 6.Полость Вв этом случае сообщает­ся со сливом. У поршня 2диаметр штока меньше, чем у поршня 1. Вследствие разности эффективных площадей поршень 2удерживается в крайнем правом положении при постановке на упор поршня 1. Диа­метр раскрытия сопла для этих трех положений регулируют узлами 7, 5 и 9(соответственно для максимального, промежуточного и мини­мального сечений).

Cопло с аэродинамическим регулированием. В кольцевую полость 4 из одной ступени компрессора подводится сжатый воздух, который на срезе сопла направляется перпендикулярно по­току газов, обжимая последний и уменьшая его живое сечение.

Рис.26. Схема с аэродинамическим регулированием

 





Поделиться с друзьями:


Дата добавления: 2016-12-05; Мы поможем в написании ваших работ!; просмотров: 1112 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Чтобы получился студенческий борщ, его нужно варить также как и домашний, только без мяса и развести водой 1:10 © Неизвестно
==> читать все изречения...

2405 - | 2285 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.007 с.