Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Алгоритм 1.4. Расчет средних групповых значений результативного признака




В таблице 2.2 приведены формулы для расчета средних групповых значений результативного признака Выпуск продукции.

1. В ячейке (Е41), выделенной для среднего значения результативного признака Выпуск продукции первойгруппы, перед формулой поставить знак равенства «=»;

Enter;

3. Выполнить действия 1–2 поочередно для всех групп;

4. В ячейках (C46, D46 и E46), выделенных для расчета итоговых сумм:

Перед формулой поставить знак равенства «=»;

Enter.

Результаты работы алгоритмов 1.3 и 1.4 для демонстрационного примера приведены в табл. 2.2.

Задача 2. Оценка тесноты связи изучаемых признаков на основе эмпирического корреляционного отношения

Задача решается в два этапа:

1. Расчет внутригрупповых дисперсий результативного признака.

2. Расчет эмпирического корреляционного отношения.

Алгоритм 2.1. Расчет внутригрупповых дисперсий результативного признака

1. В ячейке, выделенной для внутригрупповых дисперсий первойгруппы (D52), перед формулой поставить знак равенства «=»; (В качествеаргумента функции ДИСПР() указан диапазон ячеек из табл. 2.1 со значениями yi первойгруппы – визуально легко определяется по цвету заливки диапазона);

2. Enter;

3. Выполнить действия 1–3 поочередно для всех групп, используя цветовые заливки диапазонов.

4. Для расчета итоговой суммы в табл. 2.3 (в ячейке C57) перед формулой необходимо поставить знак равенства «=»;

Enter.

Результат работы алгоритма 2.1 для демонстрационного примера (вариант №102) представлен в табл.2.3.

Алгоритм 2.2. Расчет эмпирического корреляционного отношения

1. В ячейке, выделенной для общей дисперсии (А63), перед формулой поставить знак равенства «=»;

Enter;

3. В ячейке, выделенной для средней из внутригрупповых дисперсий (В63), перед формулой поставить знак равенства «=»;

Enter;

►Примечание. В случае если при выполнении вычисления в ячейке В63 выдается сообщение "Ошибка в формуле", то разделительный знак «,» между аргументами функции СУМПРОИЗВ(Д1,Д2) необходимо заменить на знак «;».

5. В ячейке, выделенной для значения межгрупповой (факторной) дисперсии (С63), перед формулой поставить знак равенства «=»;

Enter;

7. В ячейке, выделенной для эмпирического корреляционного отношения (D63), перед формулой поставить знак равенства «=»;

Enter.

Результат работы алгоритма 2.2 для демонстрационного примера (вариант №102) представлен в табл.2.4.

Задание 2

Построение однофакторной линейной регрессионной модели связи изучаемых признаков с помощью инструмента Регрессия надстройки Пакет анализа

Алгоритм выполнения Задания 2





Поделиться с друзьями:


Дата добавления: 2016-12-05; Мы поможем в написании ваших работ!; просмотров: 575 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Либо вы управляете вашим днем, либо день управляет вами. © Джим Рон
==> читать все изречения...

2288 - | 2025 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.