Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Боковая рефракция и её влияние на результаты угловых измерений

Одним из основных источников ошибок при высокоточных угловых измерениях в триангуляции является боковая рефракция. Поднятие визирного луча над препятствиями на несколько метров уменьшает влияние боковой рефракции местного характера.

Рис.2.15. Влияние боковой рефракции

 

Луч света из-за различной плотности среды проходит от точки А к точке В среды не по прямой АВ, а по сложной кривой двоякой кривизны оптически кратчайшим путём АmВ (рис.2.15). Находящийся в точке А наблюдатель увидит изображение наблюдаемого предмета В не в направлении АВ, а по касательной АВ¢ к последнему элементу световой кривой АmВ в точке А. Угол В¢АВ называется углом рефракции (рефракцией) в точке А. Горизонтальная составляющая его d называется углом боковой рефракции (боковой рефракцией), а вертикальная составляющая этого угла – углом вертикальной рефракции (вертикальной рефракцией).

При больших расстояниях величина вертикальной рефракции достигает минуты и более, боковая рефракция при этом не превышает несколько секунд. Однако наличие боковой рефракции усложняет проблему точного измерения горизонтальных углов и, по существу, ограничивает дальнейшее повышение точности угловых измерений.

Различают большие (областные) и малые (местные) поля боковой рефракции. Большие поля рефракции обусловлены общим географическим распределением плотности воздуха от экватора к полюсу, в прибрежных зонах морей и океанов, вблизи горных хребтов и т.д. Такие большие поля боковой рефракции по их свойствам близки к однородным. Их влияние на направления длиной 25-30км составляет в среднем около 0,2² и носит систематический характер.

Рефракция местного происхождения обусловлена местными аномалиями плотности воздуха на пути визирного луча. При неблагоприятном стечении обстоятельств ошибки в углах и азимутах за влияние местных полей рефракции могут достигать 3-7² и более.

Средняя квадратическая величина влияния местных полей рефракции на точность угловых измерений в триангуляции высших классов составляет в среднем 0,4-0,6², а на точность определения азимутов на пунктах Лапласа – 0,6-0,8². Из-за большого разнообразия подстилающей поверхности местная рефракция в сетях триангуляции имеет случайное распределение, хотя по отдельным направлениям носит характер систематических ошибок.

Боковая рефракция d зависит от наклонов к горизонту эквипотенциальных поверхностей n=const (n – показатель преломления воздуха), а, следовательно, от метеорологических элементов и их градиентов. Эта зависимость без учёта пренебрегаемо малого влияния влажности воздуха (составляет менее 1% от d) может быть выражена формулой

d = e + s, (2.3)

где для неоднородного поля (Ñгn ¹ const):

(2.4)

и для однородного поля (Ñгn = const):

(2.5)

В формулах (2.3) - (2.5):

d - поправка в измеренное направление за влияние боковой рефракции (в секундах дуги);

s – длина визирного луча (м) по хорде, стягивающей его концы;

y – расстояние (м) по хорде от начальной точки луча до текущей;

p – давление воздуха (мм рт. ст.);

T =273, 2+ T °C – абсолютная температура Кельвина;

¶T/¶H» (T2-T1) / (H2-H1) – вертикальный градиент температуры воздуха (градус/м);

g - угол, отсчитываемый от точки зенита до вектора Ñn, направленного в сторону уменьшения n = n (X, Y, H);

A и Q – азимуты измеряемого направления и вектора Ñn соответственно, отсчитываемые по ходу часовой стрелки от оси X, направленной на север, к оси Y, направленной на восток;

z – зенитное расстояние наблюдаемой цели;

Ñг n – горизонтальный градиент показателя преломления воздуха.

Составляющая s отражает в первую очередь влияние местных полей боковой рефракции, а составляющая e - влияние рефракционных полей значительного протяжения. В общем случае, т. е. при e + s ¹ 0 и A ¹ Q, имеем

s = 0, если (tg γ)s = 0.

Однако в подавляющем числе случаев наклоны tg γ на всём пути визирного луча длиной s не равны нулю. Поэтому

e ® 0, если (tg g)s ® 0;

В триангуляции |s| > |e| поэтому основное внимание должно быть направлено на существенное ослабление влияний местных полей боковой рефракции (составляющей s). Заметим, что при s ® 0 и e ® 0.

Известно, что в нижнем 300-метровом слое атмосферы, в котором ведутся наблюдения на пункты триангуляции, вертикальные градиенты температуры в суточном ходе их движения в сутки (утром в момент времени tу0, наступающий через 1-2 часа после восхода Солнца, и вечером в момент времени tв0, наступающий за 1-2 часа перед заходом) переходят через нуль, изменяя в эти моменты времени всякий раз знаки на противоположные (рис.2.16).

Под воздействием суточного хода рефракции каждое измеряемое направление (касательная к последнему элементу световой кривой в точке приёма света) также испытывает суточный ход (рис.2.17). В связи с этим возникает задача учёта суточного хода измеряемых направлений при высокоточных угловых измерениях и азимутальных определениях с целью приведения (редуцирования) их результатов к определённым физическим условиям, когда влияние боковой рефракции рано или почти равно нулю.

Рис.2.16. График суточного хода вертикальных градиентов температуры воздуха в открытой местности (среднее за июнь)

 

Так как на двух-, трёхчасовом отрезке времени в окрестности моментов t0, когда обычно измеряют горизонтальные углы в триангуляции, температурные градиенты, а, следовательно, и функционально связанная с ними боковая рефракция изменяются во времени практически линейно и, переходя через нуль, меняют знаки на противоположные, то отсюда вытекает простой и в то же время эффективный способ почти полного исключения влияний местных полей боковой рефракции из результатов наблюдений.

Рис.2.17. График изменения во времени угла β земного предмета под воздействием суточного хода боковой рефракции

 

Суть этого способа сводится к тому, что в нижнем 300-метровом слое атмосферы горизонтальные направления (углы и азимуты) надо либо измерять симметрично во времени относительно среднего момента t0 изотермии воздуха на высоте визирного луча и выводить среднее из результатов измерений, либо редуцировать результаты измерений на момент времени t0 в случае асимметричных наблюдений.

В массовых работах по высокоточным угловым измерениям в триангуляции целесообразно распределять приёмы измерения направлений симметрично во времени относительно момента времени t0, когда наступают наиболее спокойные и чёткие изображения визирных целей, характерные для периода изотермии воздуха на высоте визирного луча. Редуцирование асимметричных измерений используется при обработке результатов измерений повышенной точности, в первую очередь при определении азимутов на пунктах Лапласа.

Горизонтальные направления β, измеренные в течение нескольких вечеров не менее чем 15-18 круговыми приёмами на отрезке времени (tнач < t0 < tкон) £ 2-3 ч, могут быть редуцированы на средний на пункте момент x0 вечерней изотермии воздуха по формуле

β0 = β + k (x0 –x), (2.6)

где β0 – исправленное за рефракцию значение угла;

β – среднее значение угла из приёмов;

k – часовое изменение этого угла;

x0=t0 – t зах ; t зах - момент захода Солнца;

x – среднее по приёмам время наблюдений на пункте;

k(x0 – x) = δ – поправка за асимметрию времени наблюдений, или, что то же самое, поправка за влияние рефракции.

В формуле (2.6) неизвестными являются часовые изменения k и моменты времени x0. Часовые изменения вычисляются по формуле

, (2.7)

где

- время и результаты измерений угла в отдельных приёмах;

- средние значения времени и угла из всех приёмов.

Часовые изменения вычисляют на пункте для каждого угла, отсчитываемого от начального направления, причём отдельно для вечерних и утренних наблюдений.

Из статистических данных установлено, что в триангуляции 2 класса часовые изменения углов треугольников колеблются от 0 до ±3² в час и равны в среднем ±0,7² в час; асимметрия времени наблюдений на пунктах в разных физико-географических условиях изменяется от 0 до ±2ч, а поправки в углы треугольников за рефракцию колеблются от 0 до ±1,6². После введения поправки за рефракцию вес измеренного угла возрастает в среднем в 1,7 раза.

Выгоднейшее время наблюдений в триангуляции следует рассматривать с двух точек зрения:

  • с точки зрения наилучших условий видимости, минимальных колебаний и высокого качества изображений визирных целей;
  • с точки зрения наименьшего влияния местных полей рефракции на результаты измерений.

Такие благоприятные для наблюдений условия имеют место вечером и утром, особенно в периоды, когда в слое воздуха на высоте визирного луча наблюдается состояние, наиболее близкое к изотермии (рис.2.16). Продолжительность этого благоприятного для наблюдений отрезка времени зависит от многих факторов и изменяется в вечерние часы от нескольких десятков минут в полупустынных и степных районах в тихую безоблачную жаркую погоду летом до нескольких часов в холодную и ветреную погоду при наблюдениях в горных и северных районах. Заканчивать наблюдения рекомендуется примерно за полчаса до захода Солнца. Наблюдения следует вести на спокойные и слегка колеблющиеся изображения визирных целей, когда случайные их колебания не превышают 2².

 



<== предыдущая лекция | следующая лекция ==>
Атмосфера Земли. Строение и основные характеристики | Влияние боковой рефракции на азимутальные определения
Поделиться с друзьями:


Дата добавления: 2016-11-24; Мы поможем в написании ваших работ!; просмотров: 456 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Бутерброд по-студенчески - кусок черного хлеба, а на него кусок белого. © Неизвестно
==> читать все изречения...

2526 - | 2447 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.