Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Нестационарное уравнение Шредингера.

Лекция 5. УРАВНЕНИЕ ШРЕДИНГЕРА.

Вероятностный смысл волн де Бройля. Волновая функция.

Волны де Бройля имеют специфическую квантовую природу, не имеющую аналогии с волнами в классической физике. Это не электромагнитные волны, так как их распространение в пространстве не связано с распространением какого-либо электромагнитного поля. Вопрос о природе волн можно сформулировать как вопрос о физическом смысле амплитуды этих волн. Вместо амплитуды удобнее выбрать интенсивность волны, пропорциональную квадрату модуля амплитуды.

Из опытов по дифракции электронов следует, что в этих экспериментах обнаруживается неодинаковое распределение пучков электронов, отраженных по различным направлениям. С волновой точки зрения наличие максимумов числа электронов в некоторых направлениях означает, что эти направления соответствуют наибольшей интенсивности волн де Бройля. Интенсивность волн в данной точке пространства определяет плотность вероятности попадания электронов в эту точку за 1 сек.

Это послужило основанием для своеобразного статистического, вероятностного истолкования волн де Бройля.

Квадрат модуля амплитуды волн де Бройля в данной точке является мерой вероятности того, что частица обнаруживается в этой точке.

Для того чтобы описать распределение вероятности нахождения частицы в данный момент времени в некоторой точке пространства, введем функцию, которая является функцией времени и координат, обозначается греческой буквой ψ и называется волновой функцией или просто пси-функцией.

По определению - вероятность того, что частица имеет координату в пределах x, x+dx.

Если , то - вероятность того, что частица находится в объеме dxdydz.

Следовательно, вероятность того, что частица находится в элементе объема dV, пропорциональна квадрату модуля пси-функции и элементу объема dV.

Физический смысл имеет не сама функция ψ, а квадрат ее модуля , где ψ* - функция, комплексно сопряженная с ψ. Величина имеет смысл плотности вероятности, т.е. определяет вероятность пребывания частицы в данной точке пространства. Иными словами определяет интенсивность волн де Бройля. Волновая функция является основной характеристикой состояния микрообъектов (элементарных частиц, атомов, молекул).

Нестационарное уравнение Шредингера.

Уравнения Ньютона в классической механике позволяют для макроскопических тел решить основную задачу механики – по заданным силам, действующим на тело (или систему тел), и начальным условиям найти для любого момента времени координаты тела и его скорость, т.е. описать движение тела в пространстве и времени.

При постановке аналогичной задачи в квантовой механике необходимо учитывать ограничения на возможность применения к микрочастицам классических понятий координат и импульса. Поскольку состояние микрочастицы в пространстве в данный момент времени задается волновой функцией, а точнее - вероятностью нахождения частицы в точке x,y,z в момент t, основное уравнение квантовой механики является уравнением относительно пси-функции .

Это уравнение было получено в 1926 г. Шредингером. Как и уравнения движения Ньютона, уравнение Шредингера постулируется, а не выводится. Справедливость этого уравнения доказывается тем, что полученные с его помощью выводы находятся в хорошем согласии с экспериментами.

 

Уравнение Шредингера имеет вид

,

здесь m – масса частицы, i – мнимая единица, - оператор Лапласа, результат действия которого на некоторую функцию

.

U(x,y,z,t) – в рамках наших задач потенциальная энергия частицы, движущейся в силовом поле. Из уравнения Шредингера следует, что вид пси-функции определяется функцией U, т.е. в конечном счете, характером сил, действующих на частицу.

Уравнение Шредингера дополняется важными условиями, которые накладываются на пси-функцию. Этих условий три:

1) функция ψ должна быть конечной, непрерывной и однозначной;

2) производные должны быть непрерывны

3) функция должна быть интегрируема, т.е. интеграл

должен быть конечным. В простейших случаях третье условие сводится к условию нормировки

Это означает, что пребывание частицы где-либо в пространстве есть достоверное событие и его вероятность должна быть равна единице. Первые два условия – обычные требования, накладываемые на искомое решение дифференциального уравнения.

Поясним, как можно прийти к уравнению Шредингера. Ограничимся для простоты одномерным случаем. Рассмотрим свободно движущуюся частицу (U = 0).

Сопоставим ей, согласно идее де Бройля, плоскую волну

Заменим и и перепишем

.

Продифференцировав это выражение один раз по t, а второй раз дважды по x, получим

;

Энергия и импульс свободной частицы связаны соотношением

.

Подставив в это соотношения выражения для Е и р2

Последнее выражение совпадает с уравнением Шредингера при U =0.

В случае движения частицы в силовом поле, характеризуемом потенциальной энергией U, энергия Е и импульс р связаны соотношением

.

Тогда

.

Изложенные рассуждения не имеют доказательной силы и не могут рассматриваться как вывод уравнения Шредингера. Их цель – пояснить, каким образом можно прийти к установлению этого уравнения.



<== предыдущая лекция | следующая лекция ==>
Типы коррекционных программ и особенности их применения. | Физические основы искусственного охлаждения и принципы получения низких температур
Поделиться с друзьями:


Дата добавления: 2016-11-24; Мы поможем в написании ваших работ!; просмотров: 3416 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Не будет большим злом, если студент впадет в заблуждение; если же ошибаются великие умы, мир дорого оплачивает их ошибки. © Никола Тесла
==> читать все изречения...

2574 - | 2263 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.