Все воды, находящиеся в порах и трещинах горных пород ниже поверхности Земли, относятся к подземным водам. Часть этих вод свободно перемещается в верхней части земной коры под действием гравитационных сил, а другая часть находится в очень тонких порах, удерживаясь силами поверхностного натяжения. Подземные воды не могут существовать без обмена с водой поверхностной и активно участвуют в круговороте воды в природе. Все, что связано с подземной водной оболочкой, включая теоретические и, особенно, прикладные аспекты, изучает наука гидрогеология. В наше время непрерывно усиливающегося техногенного пресса на природную среду пресная вода стала важнейшим полезным ископаемым.
Структура и свойства воды определяется строением ее молекулы – Н2 О в виде тетраэдра, в центре которого находится атом кислорода. На концах одного из ребер тетраэдра расположены два положительных заряда ядер атомов водорода, что составляет гидроль или элементарную дополнительную структурную единицу воды.
Гидроли могут объединяться между собой. Так, для льда устойчивой структурой будет тетраэдр, состоящий из гидролей. Гексагональная решетка льда, состоящая из связанных между собой тетраэдров очень рыхлая, поэтому увеличение температуры приводит к нарушению и так непрочных связей решетки и некоторые гидроли как бы «падают» внутрь решетки, которая разрушается на отдельные массивы и, наконец, превращается в пресную воду, обладающую наибольшей плотностью при Т= +4 ° С.
Виды воды в горных породах
Вода в горных породах содержится в нескольких различных видах.
1. Кристаллизационная вода находится в составе кристаллической решетки некоторых минералов, например, в гипсе, мирабилите. Если эти минералы нагревать, то вода высвобождается из кристаллической решетки. Так, гипс потеряет одну молекулу воды при +107° С, а вторую – при +170 ° С, после чего он превращается в ангидрит – CaSO 4.
2. Вода в твердом виде встречается в многолетнемерзлых породах в виде кристаллов и прожилков льда. Также лед образуется и при сезонном промерзании воды, содержащейся в горных породах.
3. Вода в виде пара содержится в воздухе, который находится в порах горной породы.
4. Прочносвязанная вода располагается в виде молекулярной прерывистой пленки на поверхности мельчайших частиц таких пород, как глины и суглинки. Эта пленка удерживается силами молекулярного сцепления и не может стечь с поверхности частицы.
5. Рыхлосвязанная вода представляет собой более толстую пленку из нескольких слоев молекул воды на частицы породы. Эта вода обладает способностью перемещаться от более толстой пленке к менее толстой.
6. Капельно - жидкая (гравитационная) вода уже обладает способностью свободно перемещаться в горной породе по трещинам и порам под действием силы тяжести, начиная с верхнего почвенного слоя.
7. Капиллярная вода, как следует из названия, находится в тончайших капиллярных (лат. капилярис – волосяной) трубочках или порах, в которых удерживается силами поверхностного натяжения с образованием менисков. Капиллярная вода обычно располагается выше уровня грунтовых вод и при этом она может подниматься подтягиваясь вверх от этого уровня на 1,5 – 3 м. Капиллярная кайма, будучи связана с уровнем грунтовых вод, колеблется вместе с ним.
Выше уровня грунтовых вод может располагаться еще одна неширокая кайма капилярно- подвешенной воды, удерживаемой в тонких порах почвы и подпочвенных горизонтов суглинков и глин.
Подземные воды распределяются в верхней части земной коры вполне закономерно. Самая верхняя часть земной коры, вблизи поверхности, называют зоной
аэрации, т.к. она связана с атмосферой и с почвенным покровом. Ниже нее залегает зона полного насыщения, где вода распространена преимущественно в жидком виде, тогда как в зоне аэрации она может быть и парообразной. Если температуры отрицательны, то вода в этих двух зонах может присутствовать и в виде льда.
Таким образом, зона аэрации представляет собой как бы переходный буферный слой между атмосферой и гидросферой. В зоне полного насыщения все поры заполнены капельно - жидкой водой и тогда образуется водоносный горизонт. Однако горные породы в различной степени проницаемы для воды, что зависит от ряда факторов. Следует подчеркнуть, что пористость и проницаемость не одно и тоже.
Горные породы подразделяются на:
1. Водопроницаемые – песок, гравий, галечники, конгломераты, трещиноватые песчаники, доломиты, закарстованные известняки и др. и это несмотря на то, что галечники, прекрасно проницаемые для воды, имеют пористость всего 20%. Пористость Где Vn – объем пор в образце, а V – объем всего образца. - пористость в процентах. Пески обладают пористостью в 30-35%.
2. К слабопроницаемым породам относятся супеси, легкие суглинки, лёссы.
3. Водоупорными считаются всевозможные глины, тяжелые суглинки, плотные сцементированные породы.
Глины имеют пористость в 50-60%. Все дело в том, что поры в глинах очень тонкие (субкапиллярные) и вода через них не может проникнуть, т.к. задерживается силами поверхностного напряжения. Водопроницаемость зависит не от количества пор, а от размера и формы слагающих породу зерен и от плотности их сложения.
Способность горных пород накапливать и удерживать в себе воду называется влагоемкостью. Под полной влагоемкостью понимают такое состояние породы, в которой все виды пор заполнены водой. Максимальная молекулярная влагоемкость – это то количество воды, которое остается в горной породе после того, как стечет вся капельно - жидкая гравитационная вода.
Оставшаяся вода удерживается в порах силами молекулярного сцепления и поверхностного натяжения. Разница между полной влагоемкостью и максимальной молекулярной влагоемкостью называется водоотдачей, а удельной водоотдачей – количество воды, получаемой из 1 м3 горной породы.
Классифицировать подземные воды можно по разным признакам – по условиям залегания, по происхождению, по химическому составу. Типы подземных вод по условиям залегания. Выделяются воды безнапорные, подразделяющиеся на верховодку, грунтовые и межпластовые, а также напорные или артезианские.
Верховодка – это временное скопление воды в близповерхностном слое в пределах зоны аэрации, располагающееся в водоносных отложениях, лежащих на линзовидном, выклинивающемся водоупоре. Как правило, верховодка появляется весной, когда тают снега или в дождливое время, но потом она может исчезнуть. Поэтому колодцы, выкопанные до верховодки, летом пересыхают.
Временными водоупорами могут быть любые выклинивающиеся линзовидные пласты глин и тяжелых суглинков, располагающиеся в толще водоносных аллювиальных или флювиогляциальных отложений.
Грунтовые воды представляют собой первый сверху постоянный водоносный горизонт, располагающийся на первом же протяженном водоупорном слое. Питаются грунтовые воды из области водосбора в пределах водоносного горизонта. Грунтовые воды могут быть связаны с любыми породами как рыхлыми, так и твердыми, но трещиноватыми.
Поверхность грунтовых вод называется зеркалом, а мощность водосодержащего слоя оценивается вертикалью от зеркала до кровли водоупорного горизонта и она не остается постоянной, а меняется из - за неровностей рельефа, положения уровня разгрузки, количества атмосферных осадков, изгиба кровли водоупорного слоя. Выше зеркала грунтовых вод образуется кайма капиллярно подтянутой воды.
Движение и режим грунтовых вод.
Зеркало грунтовых вод ведет себя в зависимости от рельефа повышаясь на водоразделах и понижаясь к рекам, оврагам и другим местам дренирования (фр. дренаж – сток). Естественно, что вода в водоносном слое под действием силы тяжести находится в непрерывном движении и стремится достичь наиболее низкого места в рельефе, например, уреза воды в реке, тальвега дна оврага. Именно там, в области разгрузки подземных вод, образуются родники. Вода в водоносном слое перемещается в зависимости от пористости пород, характера соприкосновения частиц, формы и размеров пор, уклона водоносного слоя. Обычно в песках скорость движения воды при небольших уклонах составляет от 0,5 до 2-3 м / сутки. Но если уклон большой и поры велики, то скорость может достигать первых десятков м / сутки.
В зависимости от количества атмосферных осадков объем грунтовых вод может изменяться и летом дебит (фр. дебит – расход) источников падает, а в сильные засухи родники даже пересыхают. Зеркало грунтовых вод особенно сильно может понижаться в связи с забором воды для промышленных нужд. Вокруг скважин, откачивающих воду, уровень грунтовых вод постепенно понижается и образуется депрессионная воронка.
Межпластовые безнапорные подземные воды приурочены к водоносным слоям, располагающимся между двумя водоупорными слоями. Иногда таких водоносных пластов может быть несколько. Если водоносный горизонт обладает большой мощностью и выше его зеркала находится озеро, пруд или река, то направление течения воды в водоносном горизонте будет проходить по изогнутым линиям, стремящимся к реке.
Напорные или артезианские межпластовые воды образуются в том случае, если водоносный горизонт, зажатый между двумя водоупорными, приурочен либо к пологой синклинали или мульде,
Впервые такие фонтаны воды были получены во Франции в провинции Артезия, поэтому они и стали называться артезианскими. Каждый артезианский бассейн включает в себя области: питания, напора и разгрузки. Первая область представляет собой выход на поверхность водоносного слоя, на которую выпадают все атмосферные осадки, питающие этот водоносный горизонт. Область напора заключена между двумя водоупорами – водоупорной кровлей и водоупорным ложем, а там, где водоносный слой появляется на поверхности, или вскрывается скважинами, но ниже области питания, называется областью разгрузки. Нередко в артезианских бассейнах развито сразу несколько водоносных напорных горизонта, что особенно характерно для артезианских бассейнов в межгорных впадинах, где глубины водоносных горизонтов могут превышать 1000-1500 м. В платформенных областях, где артезианские бассейны большие, верхние водоносные горизонты до глубин в 200-5— м содержат преимущественно пресные воды, а ниже воды обладают уже высокой минерализацией.
В центре Европейской части России находится Московский артезианский бассейн, располагающийся в пологой чашеобразной впадине – Московской синеклизе. Водоносные горизонты связаны с трещиноватыми каменноугольными и девонскими известняками, а водоупорами служат прослои глин. Области питания располагаются на крыльях синеклизы. В девонских карбонатных отложениях на глубинах от 400 до 600 м развиты минеральные воды с минерализацией 2,4-4,5 г/ л. Это всем хорошо известная московская минеральная вода. В Московском артезианском бассейне сосредоточены большие запасы пресных и промышленных вод. На всю территорию России составлены карты распространения артезианских бассейнов и подсчитаны запасы в них воды, как пресной, так промышленной и термальной.
Типы источников. Всем хорошо известны выходы подземных вод на поверхность в виде родников и ключей с холодной, вкусной водой. Родники появляются там, где происходит разгрузка водоносных горизонтов. Нисходящие источники чаще всего располагаются недалеко от уреза воды в долине реки, в нижней части склонов оврагов, там где к поверхности подходят водоупорные горизонты. Источники этого типа связаны как с верховодкой, так и с грунтовыми, а также межпластовыми водами. Все они характеризуются изменяющимся дебитом, вплоть до высыхания в жаркое лето. В источниках нисходящего типа вода изливается спокойно, в виду небольшого угла наклона слоев. Нередко можно наблюдать вдоль берега реки сплошную линию сочащихся подземных вод. Нисходящие источники обычно водообильны, поэтому местами они дают начало ручьям и небольшим речкам, как происходит с карстовыми источниками, вытекающими из пещер.
Восходящие источники - это выходы на поверхность в местах разгрузки напорных вод, тогда как сам водоносный горизонт расположен намного ниже. Вода может подниматься вверх по трещинам или тектоническому разлому. Вокруг минеральных источников, особенно углекислых вод, на поверхности образуется скопление т.н. известкового туфа или травертина, иногда достигающего нескольких метров мощности. Такие травертины белого, желтоватого или розового цветов известны на г.Машук в Пятигорске, в районе Кавказских минеральных вод. Туф образуется из гидрокарбонатно- кальциевых вод, когда гидрокарбонат Ca(HCO3)2 переходит в СаСО3 при уходе в воздух СО2 – углекислого газа. В травертинах часто находят отпечатки листьев растений, кости древних животных, которые постепенно обвалакиваются известковым туфом.
Подземные воды и окружающая среда.
Гидрогеологические процессы, происходящие в верхней части земной коры тесно связаны с хозяйственной деятельностью человека – водоснабжением, эксплуатацией городских агломераций, обоснованием строительства и т.д. Именно в области прикладной геологии очень важно понимать существо природно- технического взаимодействия, усиливающегося техногенного пресса на геологическую среду.
Одной из важных задач прикладной геологии является обоснование водозабора для хозяйственно - питьевого водоснабжения, а, сейчас, особенно, оценка качества воды.
Какое количество воды можно извлечь из данного водоносного слоя? Как при этом изменится уровень грунтовых вод? Какова будет депрессионная воронка и как быстр она сформируется? Какова должна быть ширина зоны санитарной охраны? На все эти вопросы надо дать ответ.
В связи с отбором воды из водоносных горизонтов разного типа, изменяется водный режим ландшафтов, изменение растительности, поверхностный сток, напряженно-деформированное состояние водонасыщенных горных пород. Понижение уровня грунтовых вод приводит к угнетению лесов, к осушению и возгоранию летом торфяников, к уменьшению поверхностного водного стока и обмелению небольших рек, эвтрофикации мелеющих озер, оседанию отдельных участков земной поверхности. Поэтому необходим мониторинг влияния водоотбора на окружающую среду, а также геофильстрационное моделирование потока подземных вод.
Для многих городов характерно подтопление территорий, т.е. повышение уровня грунтовых вод за счет повышенной инфильтрации осадков, утечек промышленных вод, искусственного орошения. Такое подтопление вызывает усиление оползневых явлений, суффозии (вымывания), уменьшение прочностных свойств грунтов. Поэтому необходимо проводить дренаж, чтобы снизить уровень грунтовых вод. Другая опасность – это техногенное загрязнение подземных вод из атмосферы в
виде твердой и жидкой фаз, закачка промышленных стоков, утечки из систем канализации, свалки, нефтепродукты и другие способствуют проникновению токсичных веществ сначала в зону аэрации, а потом и в водоносные горизонты.
Все сказанное выше свидетельствует об уязвимости водоснабжения населения в связи с усиливающимся техногенным загрязнением. Существует еще много очень важных вопросов, касающихся прикладной гидрогеологии. Отсюда следует очевидный вывод о том поистине жизненном значении, которое приобретает наука о подземных водах.
КАРСТОВЫЕ ПРОЦЕССЫ
Карстовые процессы развиваются в растворимых природными поверхностными и подземными водами горных породах: известняках, доломитах, гипсах, ангидритах, каменной и калийной солях. Основой процесса является процесс химического растворения пород и процесс выщелачивания, т.е. растворения и вынос какой- то части горных пород. Различные по своему составу воды растворяют породы по разному. Особенно агрессивны по отношению к карбонатным породам воды, насыщенные углекислотой, а гипс сильнее растворяется солоноватыми водами. Под карстом понимают не только процесс, но и его результат, т.е. образование специфических форм растворения. Сам термин карст происходит от названия известкового плато в Словенских Альпах, где карстовые формы рельефа выражены наиболее ярко. Карст развивается везде, где есть выходы на поверхность карбонатных пород: в Горном Крыму, на побережье Адриатического моря, на Кавказе, Урале, в Средней Азии и еще во многих местах земного шара. Если карстовые формы видны на поверхности, то говорят об открытом карсте, а если они перекрыты толщей каких- то других отложений, то – о закрытом карсте. Последний чаще развитит в равнинных платформенных районах, тогда как первый – в горных.
Карстовые формы.
На поверхности карстовые формы представлены каррами, желобами и рвами, понорами, воронками разных типов, западинами, котловинами, слепыми долинами.
Карры - это разнообразные неглубокие выемки, образованные, в основном, выщелачиванием известняков поверхностными атмосферными водами. Н.А.Гвоздецким, одним из знатоков карста, были выделены карры следующих типов: лунковые, трубчатые, бороздчатые, желобковые, трещинные и ряд других. Все эти формы имеют глубину 5-20 – 5-0 см, редко размах рельефа достигает 1-2 м. Наиболее типичны желобковые карры, представленные параллельными желобками, разделенные острыми грядами. Рельеф с желобковыми каррами напоминает стиральную доску, а участки развития многочисленных карров называют карровыми полями. Желоба и рвы представляют собой более протяженные и глубокие участки карстового выщелачивания поверхности известняков, наследующие поверхностные трещины и достигающие глубины до 5 м.
Поноры – узкие отверстия, наклонные или вертикальные, возникающие на узлах пересечения трещин при дальнейшем развитии процесса растворения и выщелачивания. Эти каналы служат стоком поверхностных вод и направляют их вглубь массива горных пород.
Карстовые воронки подразделяются на: 1) воронки поверхностного выщелачивания; 2) провальные; 3) воронки просасывания (коррозионно- суффозионные по Н.А.Гвоздецкому). Первый тип воронок напоминает собой воронку от взрыва снаряда или бомбы. Образуются они за счет выщелоченной с поверхности породы. Обычно в центре такой воронки располагается понор - канал, по которому уходит вода. Диаметр воронок обычно до 50 м, редко больше, а глубина 5-20 м. Провальные воронки связаны с обрушением свода над полостью, выработанной водами на некоторой глубине.
Коррозионно- суффозионные воронки возникают в том случае, когда карстующиеся известняки перекрыты пластом песчаных отложений и последние вмываются в нижележащие карстовые полости. При этом из пласта песка уносятся отложения в поноры и образуется воронка просасывания или вымывания. Процессы суффозии широко распространены в природе.
Блюдца и западины представляют собой мелкие, небольшие карстовые воронки. Если воронки разных генетических типов сливаются по несколько штук вместе, то образуется карстовая котловина с рядом углублений на дне. Иногда дно у котловин может быть плоским. Полья представляют собой довольно большие, сотни метров в диаметре, неправильной формы понижения, образовавшиеся при слиянии ряда котловин и воронок. В том числе и провальных.
Карстовые колодцы и шахты - это каналы, уходящие почти вертикально в известковые массивы на десятки и сотни метров при диаметре в первые метры. Они образуются при выщелачивании по трещинам, иногда поверхностными водными потоками, размывающими известняки. Шахтами называются вертикальные полости глубиной свыше 20 м, а меньше – колодцами. Если шахты соединяются между собой, а также с субгоризонтальными ходами и пещерами, то образуются карстовые пропасти, достигающие глубины в 1000 метров и более.
Слепые долины представляют собой небольшие речки, протекающие в закарстованных районах, имеющие исток, но внезапно оканчивающиеся у какой- нибудь воронки или поноры, куда и уходит вся вода. Иногда долины бывают полуслепыми, когда вода речки вдруг уходит под землю, а потом, через несколько километров появляется вновь, как это происходит в Западном Крыму около Севастополя. Речка Сууксу начинаясь на склонах гор внезапно исчезает и дальше продолжается лишь ее сухая долина с галькой.
Примерно через 10-12 км река вновь появляется в виде мощного источника и уже как р. Черная впадает в Севастопольскую бухту. Надо отметить, что такие слепые и полуслепые долины широко развиты в местах распространения карстующихся пород - на Урале, в Башкирии, в Ленинградской, Смоленской, Нижегородской областях, в Крыму и на Кавказе.
В некоторых районах европейской равнины известны озера, которые внезапно исчезают, а потом вновь появляются. Дело в том, что эти озера находятся в карстовых котловинах или воронках. Поноры, присутствующие в них, забиты илом и тогда вода в озерах держится. Но если такая «пробка» вымывается, то и вода уходит в понор и глубже в карстовые полости.
Карстовые пещеры возникают различными способами: путем растворения, выщелачивания и размыва; путем обрушения, раскрытия и последующего размыва тектонических трещин. Подземные воды, протекая по трещинам или тектоническимраздробленным зонам, постепенно растворяя и выщелачивая известняки или доломиты.
Таким образом, формируются пещерные полости, часто многоэтажные и сложные, когда отдельные крупные пещеры – «залы», соединяются с другими узкими каналами, щелями, нередко с текущими по ним ручьями. Крупные пещерные комплексы формируются продолжительное время – десятки и сотни тысяч лет. В пещерах сделаны многие важные палеонтологические и археологические находки, которые позволяют датировать верхние этажи пещер более древним возрастом, чем нижние. Развитие пещер тесно связано с колебаниями уровня зеркала подземных вод и местным базисом эрозии, например, рекой, а также тектоническими движениями. При понижении зеркала грунтовых вод, уже выработанные полости пещер осушаются и процесс растворения и выщелчивания переходит на более низкий уровень. Так может продолжаться несколько раз согласно с этапами врезания рекии колебаниями уровня грунтовых вод. В области многолетнемерзлых пород в пещерах развиты натечные формы состоящие из льда.
На дне пещер часто встречаются красноватые глинистые отложения, т.н. «терра-росса» или «красная земля», представляющие собой нерастворимую часть карбонатных пород, обогащенную окислами железа и алюминия. Однако, наиболее впечатляющей особенностью ряда карстовых пещер являются сталактиты и сталагмиты – причудливые натечные образования, создающие неповторимый облик пещерных залов. Все дело в том, что вода, всегда капающая с потолка пещер, насыщена газом СО2, за счет растворения карбонатных пород, а, кроме того, насыщена и бикарбонатом кальция – Са (НСО3) 2. Происходит это по реакции СаСО3 + СО2 + Н2 О → Са (НСО3) 2 Эта вода, капая с потолка, теряет часть углекислоты, в результате чего реакция сдвигается влево и бикарбонат снова переходит в СаСО3, который и откладывается как на потолке пещеры (сталактит), так и на днище (сталагмит). В первую очередь на полу пещеры возникают наплывы, похожие на оплывший от свечи стеарин. Это, т.н. гуры. Затем на гурах возникают сталагмиты с широким основанием. Через какое- то время сталактиты и сталагмиты могут сомкнуться и тогда образуются колонны причудливой формы. Прекрасные многоярусные пещеры есть в горах Крыма, где они сформировались в мощных толщах известняков верхней юры; в Чехии, Словении, на Урале, Кавказе и в других местах.
До сих пор речь шла об открытом карсте. Однако во многих районах, особенно платформенных, где развит закрытый карст. Встречаются т.н. суффозионные воронки (лат. «суффозио» – подкапывание). Они возникают в том случае, когда из толщи отложений, перекрывающих карстовые формы, начинается процесс вымывания в карстовые полости. Постепенно на месте этой толщи образуется воронка, а еще ниже – полости, куда эти отложения и могут провалиться.
Карстовые формы развиваются везде, где присутствуют карстующиеся породы – известняки, доломиты, гипсы, ангидриты, каменные соли. В пределах Русской плиты широко развит покрытый карст, т. к. известняки карбона и девона повсеместно перекрыты моренными и флювиогляциальными четвертичными отложениями. Встречается также и древний карст, например, под Москвой, где в карстовых формах на поверхности каменноугольных известняков карманами залегает глинистая верхняя юра. В течение перми, триаса, ранней и средней юры этот район был сушей, и на ней интенсивно происходило карстообразование.
Гипсовый карст развит на северных склонах Уфимского плато в Башкирии, где распространены нижнепермские красноцветные породы с прослоями гипсов, доломитов. Карстовые котловины там имеют глубины до 100 м и в диаметре до первых километров. Пещеры гипсового карста в Приднестровье имеют протяженность в 142,5 км (пещера Оптимистическая), занимая 2-ое место в Мире. Знаменитая Кунгурская «ледяная» пещера в Пермской области в Приуралье имеет в длину 5,6 км и образована в гипсах и ангидритах кунгурского яруса нижней перми. Она славится своими гротами длиной до 150-160 м с ледяными потолками на сводах и полу.
ГРАВИТАЦИОННЫЕ ПРОЦЕССЫ
Если горные породы приобретают неустойчивое состояние, то в один прекрасный момент под действием силы тяжести может произойти обвал или оползень. Причин создания неустойчивости может быть много. Это и землетрясение, подмыв рекой берега реки или морская абразия, выветривание, прокладка дорог в горной местности, излишнее обводнение. Очевидно, что наиболее благоприятные условия для обвалов создаются в верхних частях скалистых горных склонов или хребтов. Обвалившаяся масса материала, состоящая из глыб, обломков щебня, грубого песка, обычно плохо сортирована, но крупные обломки скатываются по склону ниже всего. Любой материал, образовавшийся обвальным путем, называется коллювием, который образует обвальные шлейфы у подножья вертикальных обрывов куэст на Северном Кавказе и в Горном Крыму.
Сложенные массивными известняками вертикальные обрывы, высотой в десятки метров, постепенно отделяются трещинами от основной массы известняков, наклоняются и, наконец, обрушиваются вниз по склону.
Обвалы могут иметь очень большие объемы. Так, в долине Баксана на Северном Кавказе недалеко от Эльбруса в конце позднего плейстоцена, примерно 30 тыс. лет назад произошел грандиозный обвал с гор Андырчи и Курымычи, высотой около 4 км, расположенных на правом склоне долины. Причиной обвала было по- видимому, землетрясение. Огромные глыбы серых гранитов перекрыли концевую часть ледника и на несколько десятков метров «выплеснулись» вверх на противоположный склон долины. Выше по течению реки от обвала во время таяния ледника образовалось озеро. И сейчас этот колоссальный обвальный шлейф перегораживает долину Баксана и называется Тюбеле (тюрск. «тюбеле» – вал).
В 1911 г. на Памире, опять таки, во время землетрясения. Случился большой обвал, масса которого, ринувшись вниз по склону, образовала плотину на р.Мургаб высотой в 600 м. Это выше Останкинской телевизионной башни. В 1894 г. в Крыму произошел обвал с западного гребня г.Демерджи, который частично разрушил деревню, располагавшуюся у ее подножья.
Небольшие обвалы и камнепады происходят в горах после каждого сильного дождя или во время таяния снегов. Продвижение обвалов на значительные расстояния и, особенно на противоположный склон, когда обвальная масса движется вверх, казалось, бы вопреки силы тяжести объясняется, во - первых, большой энергией и скоростью массы, во - вторых, срыванием дерна с поверхности, который служит «смазкой» и, в- третьих, захватыванием фронтальной частью массы воздуха, который сжавшись, играет роль воздушной подушки, уменьшая трение. Этим объясняется своеобразное «выстреливание» обвальной массы на значительные расстояния.
Оползень это, как правило, сравнительно медленное перемещение, оползание, какой- то части склона без существенного нарушения ее внутреннего строения. Для того, чтобы часть склона соскользнула вниз необходимо наличие водоупора и залегающего на нем водоносного слоя. Тогда водоупор будет играть роль смазки для вышележащей части склона.
Оползни бывают молодыми и древними. Оползание может быть одноактным процессом или происходить неоднократно. В любом оползне различают: тело оползня, поверхность скложения, тыловой шов, надоползневой уступ. Фронтальная часть оползнядействует как нож бульдозера, сминая перед собой поверхностные слои почвы и рыхлых пород. Между тыловой частью оползня и надоползневым уступом образуется понижение, западина, нередко занятая небольшим озерцом. Оползание склонов происходит как в долинах, так и в горах. Например, широко известны оползни в Среднем Поволжье, где смазкой служат верхнеюрские темные глины. В 1884 г. в Саратове в результате оползней на левом берегу Волги были разрушены сотни домов. Южный берег Крыма сплошь покрыт системой разновозрастных, в том числе и древних, оползней, т.к. склоны сложены флишевыми породами верхнего триаса - нижней юры, состоящими из аргиллитов и тонких песчаников. По ним оползают огромные глыбы верхнеюрских известняков обрыва 1- ой гряды Крымских гор - Яйлы (яйла - пастбище, тюрск). Грандиозный оползень г.Кошки около Симеиза в Крыму имеет длину более 3 км и сложен верхнеюрскими известняками. Крымские оползни двигаются медленно, от нескольких сантиметров до 100 м в год. Однако, этого достаточно, чтобы в районе Гурзуфа на южном берегу, постоянно разрушалось шоссе. Прокладка новых дорог подрезает части склонов, что приводит к их оползанию.
В Москве, крутой склон Воробьевых гор весь покрыт небольшими оползнями, т.к. верхняя часть склона сложена тяжелыми моренными суглинками. Хорошо виден т.н. “ пьяный лес”, наклоненные в разные стороны стволы деревьев, которые сползали с частью склона. Такие же оползни развиты и по долинам рек Пахры, Клязьмы и др. в окрестностях Москвы.
Катастрофические оползни регулярно происходят в горных районах Таджикистана во время сильных ливней. Обычно сползают рыхлые склоновые отложения, разрушая кишлаки. К сожалению, при этом гибнут люди. Оползни, продолжающиеся уже длительное время, нарушили систему водоснабжения в г.Ставрополе в Северном Предкавказье. Дело в том, что Сенгилеевское озеро, из которого подается питьевая вода, расположено на 465 м ниже города, а на склонах, обращенных к озеру, развиваются оползни. Последние из них произошли весной 1999 г., разрушив три насосные станции из пяти.
Развитие оползней провоцируют землетрясения. Так, во время знаменитого своей силой Чилийского землетрясения 1960 г. возникло множество оползней и оплывин, когда по склонам перемещаются массы рыхлых пород, пропитанные водой. В 1906 г. в Сан-Франциско так же во время землетрясения на склоне холма возник оползень объемом в 100 000 м3.
Неустойчивое, предоползневое состояние массы пород вызывается разными причинами, в том числе характером наклона слоев и положением возможной оползневой массы по отношению с ним; неправильной подрезкой склонов при освоении участков с прокладкой дорог, обустройством площадок для строительства и др. Оплывина – это насыщенная водой масса рыхлого материала, способная течь под действием силы тяжести. В 1972 г. после сильных дождей в Гонконге на крутом склоне возникла оплывина, разрушившая несколько многоэтажных зданий, что привело к гибели 67 человек. Процессы солифлюкции представляют собой также процесс медленного перемещения рыхлого, водонасыщенного склонового материала.
Таким образом, коллювиальные процессы можно подразделить на:
1. обвальные; 2. оползневые: а) скольжение параллельное склону; б) скольжение по вогнутой траектории со смятием фронтальной части масс; 3. Течение или оплывание.
Эти процессы могут происходить быстро, мгновенно; могут занимать какое- то время, а могут и происходить очень медленно, со скоростью 1 мм/ сутки или 1 см/год. Такие медленные подвижки называются крипом. Явление крипа хорошо иллюстрируется загибом верхних частей пластов флишевых отложений на склоне, причем загиб направлен в сторону понижения склона.
Все гравитационные процессы – источник опасности, особенно обвалы и оползни. Предотвратить обвалы трудно, но предсказать место, где они могут быть, вполне возможно. А вот борьбу с оползнями вести необходимо. Для этого нужно укрепить оползающее тело, отвести от него воду, сделать дренаж, т.е. выкопать канавы, провести штольню для отвода воды и т.д. Оползень можно закрепить, буквально «прибив» его бетонными сваями к коренным породам. Делают это так: сначала бурят скважины через неустойчивую массу пород до коренных, устойчивых; вводят в скважину бетонную сваю и цементируют ее нижний конец в устойчивых породах; надевают на выступающий конец сваи на поверхности стальную пластину и закрепляют ее.