Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Задача 170 (необязательная).




Ответ: первое и последнее утверждения истинны, остальные ложны.

Задача 171. Задача на повторение словарного порядка. В данном случае все слова начинаются на ША, значит, упорядочение слов можно начать с деления слов на группы по третьей букве. Часть слов упорядочивается по этой букве, а оставшиеся слова начинаются на ШАР. Ясно, что первое слово в этой группе будет ШАР, а все остальные слова можно разделить на группы по четвёртой букве. В результате по четвёртой букве упорядочиваются почти все оставшиеся слова, кроме ШАРИК и ШАРИКОВЫЙ.

Задача 172 (необязательная). Наиболее сложная задача курса на разрезание мешка цепочек, предназначенная в основном для сильных учащихся. Поскольку здесь в мешках-аргументах не дано ни одной цепочки, детям необходимо провести некоторые рассуждения с опорой на полученный ими к этому моменту опыт. В мешке-результате 9 цепочек, это значит, что либо в каждом мешке-аргументе по 3 цепочки, либо в одном мешке 9 цепочек, а в другом мешке одна. Проще всего, конечно, построить здесь тривиальное решение, когда в одном из мешков будет лежать одна пустая цепочка, а в другом — все цепочки мешка-результата. Однако такое решение здесь запрещено условием, поскольку в каждом мешке должна лежать хотя бы одна непустая цепочка. Значит, нужно построить два мешка, в каждом из которых 3 цепочки.

Если в мешке-результате есть пустая цепочка, значит, в каждом из мешков есть по пустой цепочке, т. е. в мешке-результате есть все цепочки первого мешка-аргумента и все цепочки второго мешка-аргумента. Скорее всего, это более короткие цепочки — длины 1, 2 и, может быть, 3. Рассмотрим цепочки длины 1. Видим, что одна из этих цепочек (состоящая из красной круглой бусины) может быть первой в парах склеенных цепочек. Значит, эта цепочка, скорее всего, лежит в первом мешке. Теперь задача почти стала аналогичной задаче 168.

Задача 173. Несложная задача на повторение листа определений «Перед каждой бусиной. После каждой бусины». После выполнения инструкции все бусины в цепочке должны оказаться раскрашенными — в цепочке должно быть пять жёлтых, пять красных и три синих бусины.

Задача 174 (необязательная). Скорее всего, вы уже обсуждали с детьми вопрос о том, как сосчитать число цепочек в мешке-результате при склеивании двух мешков (для этого надо перемножить число цепочек в мешках-аргументах). В этом случае задачу можно предлагать практически всем учащимся. Если же этот вопрос в классе не обсуждался, самое время обсудить его здесь. Для организации общего обсуждения с детьми вам помогут комментарии к задаче 157.

Задача 175. В этой задаче встречаются сложные случаи, когда «бусина не одна» и «бусины нет». Например, для всех путей, выходящих из корневой жёлтой круглой бусины, утверждение не имеет смысла, поскольку в четырёх верхних путях жёлтая круглая бусина не одна, а в остальных — нет красной треугольной. Если вы видите, что ученик выписывает какой-то из этих путей, остановите его и вспомните вместе соответствующие листы определений. Также важно, чтобы каждый ребёнок просмотрел все пути дерева, ведь в задании говорится, что необходимо выписать все цепочки, удовлетворяющие условию. Если вы видите, что ребёнок потерял часть решений, попросите его изучить дерево ещё раз, помечая листья, ведущие в уже просмотренные им пути. Скорее всего, в процессе этой работы ученик сам найдёт ошибку.

Решение задачи:

Задача 176 (необязательная). Задача не простая. Лучше сначала написать цепочки в первом мешке. При этом нетрудно сосчитать, что их должно быть три (в мешке-результате 18 цепочек, а во втором мешке 6 цепочек). Ищем слова с разными началами, которые заканчиваются уже известными цепочками из второго мешка, находим: КОПЬЮ, СЫРЬЯ, ЗВЕРЬЕ. Значит, в первом мешке лежат цепочки: КОПЬ, СЫРЬ, ЗВЕРЬ. Теперь находим в мешке-результате слова, которые заканчиваются не теми цепочками, которые даны, и пытаемся найти неизвестные цепочки из второго мешка. Так находятся: Ё и ЁМ. Остаётся одно пустое окно во втором мешке. Дальше можно выполнить склеивание с теми цепочками, которые уже есть в мешках, при этом получится новый мешок-результат. Все слова этого мешка должны быть в мешке-результате в задаче. Поэтому ищем каждое слово в нашем мешке. Если слово уже есть, его надо обвести, если нет, его надо вписать в одно из пустых окон. Все пустые окна в мешке-результате оказываются заполненными, и 4 слова оказываются необведёнными. Они и позволяют заполнить оставшееся окно во втором мешке.

Другой вариант окончания решения — сразу заметить, что в мешке-результате есть одинаковые слова. В данном случае это означает, что во втором мешке есть одинаковые цепочки. Ясно, что это именно те цепочки, которые являются окончаниями одинаковых слов.

По окончании решения можно спросить детей, какие с точки зрения курса русского языка цепочки лежат в каждом из мешков. Оказывается, что в первом мешке лежат основы русских существительных среднего рода, во втором мешке — окончания для всех падежей таких существительных, значит, в мешке-результате лежат все падежные формы этих трёх существительных.

Урок «Таблица для склеивания мешков»

К этому уроку у ребят имеется достаточно большой опыт склеивания мешков. В частности, дети уже убедились в том, что, чем больше цепочек в мешках при склеивании, тем сложнее его осуществить, не сделав ошибок. Действительно, поскольку при склеивании каждая цепочка из первого мешка должна быть склеена с каждой цепочкой из второго мешка, то, чем больше цепочек, тем больше комбинаций. В комментарии к предыдущему листу определений мы предлагали способ перебора цепочек в мешках, позволяющий не потерять решений и не добавить лишних. Но детям будет сложно его использовать, когда число цепочек в мешках будет больше трёх, необходим более сильный инструмент. Для склеивания двух мешков таким инструментом является таблица. Её применение делает процесс перебора цепочек и их попарного комбинирования максимально наглядным. В этом случае практически невозможно пропустить цепочку или написать лишнюю, поскольку цепочек в мешке-результате ровно столько, сколько клеток в таблице (не считая шапки, конечно). Таким образом, каждой клетке, находящейся на пересечении k -й строки и n -го столбца соответствует ровно одна цепочка, которая является результатом приклеивания к цепочке, расположенной в k -й строке, и цепочке, расположенной в n -м столбце.

При использовании таблицы задачу на склеивание приходится решать немного дольше, чем обычно, ведь цепочки приходится рисовать дважды — сначала в таблицу, а потом в мешок. Но это компенсируется тем, что долгая и тщательная проверка после не потребуется.





Поделиться с друзьями:


Дата добавления: 2016-11-24; Мы поможем в написании ваших работ!; просмотров: 1185 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Если президенты не могут делать этого со своими женами, они делают это со своими странами © Иосиф Бродский
==> читать все изречения...

2517 - | 2393 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.