Методика обучения математике в коррекционной школе VIII вида начала складываться в нашей стране в 30-е годы XX века.
Основоположники коррекционной школы VIII вида в России А. Н. Грабаров, Е. В. Герье, Н. В. Чехов и др. считали, что математика должна дать умственно отсталому ребенку лишь практические приемы счета. Они утверждали, что обучение математике должно быть индивидуализировано вследствие разнообразных способностей детей, обосновывали необходимость использования конкретного материала, который должен быть хорошо знаком и интересен учащимся. В первые годы становления коррекционной школы VIII вида использовался методический опыт обучения счету прогрессивных зарубежных специалистов О. Декроли, Ж. Демора, М. Монтессори, Э. Сегена и др.
Первые методические пособия по арифметике для учителей и студентов были подготовлены Н. Ф. Кузьминой-Сыромятниковой. В них достаточно полно освещались вопросы как общей, так и частной методики арифметики.
Н. Ф. Кузьмина-Сыромятникова, исходя из общих задач коррекционной школы, сформулировала задачи обучения арифметике: общеобразовательную, воспитательную, практическую. Она справедливо пропагандировала использование наглядных средств при обучении арифметике, обращала внимание на четкое планирование работы по этому учебному предмету, организацию практических работ. Ею подробно разработана методика решения арифметических задач, даны рекомендации к организации самостоятельных работ.
Другие работы Н. Ф. Кузьминой-Сыромятниковой («Решение арифметических задач во вспомогательной школе», «Обучение
арифметике в I классе вспомогательной школы», «Пропедевтика обучения арифметике») дают более развернутые методические рекомендации по соответствующим вопросам обучения арифметике. Эти пособия сыграли большую роль в подготовке студентов дефектологических факультетов к практической работе, а также в работе учителей коррекционной школы.
В конце 40-х—начале 50-х годов в специальной методике математики появились экспериментальные исследования, посвященные совершенствованию обучения школьников с нарушением интеллекта, различным разделам арифметики и элементам наглядной геометрии. Так, в исследованиях К. А. Михальского, М. И. Кузьмицкой, О. П. Смалюги, М. Н. Перовой, А. А. Хилько, Р. А. Исенбаевой, А. А. Эк, Г. М. Капустиной, И. В. Зыкмановой и др. разработана методика обучения решению арифметических задач, показана роль подготовительных упражнений, направленных на обогащение практического опыта учащихся, сравнения и сопоставления, дидактических игр, наглядности, схематических рисунков, различных форм записи содержания и решения задач, а также предметно-практических упражнений, направленных на конкретизацию содержания задач.
Экспериментальному исследованию подвергалась методика формирования дочисловых и числовых представлений, методика обучения умственно отсталых школьников нумерации и арифметическим вычислениям (Н. И. Непомнящая, О. Ю. Штителене, Н. Д. Богановская, В. Ю. Неаре)
Исследования показали, что для успешного формирования понятия числа умственно отсталые дети должны приобрести определенный наглядно-практический опыт, что усвоение ими вычислительных приемов возможно только путем опоры на наглядность и иллюстрирование каждого выражения. Следовательно, необходима специальная методика формирования умений переносить опыт, накопленный в работе с непрерывными и дискретными множествами, на знаково-идеальный уровень. В исследованиях также разработана методика ознакомления с основными функциональными характеристиками чисел на основе измерения различными мерками и установления отношений между ними.
Б. Б. Горским, И. М. Шейной экспериментально разработана новая методика изучения нумерации и арифметических действий с многозначными числами (классом тысяч), предложена система коррекционно-развивающих упражнений, практических заданий, 6
тесно связанных с профессионально-трудовым обучением жизнью. Усовершенствована методика изучения обыкновенных и десятичных дробей (Т. В. Терехова, Л. Гринько).
Исследование путей совершенствования методики обучения измерению величин и действий над числами, полученными от измерений (И. Н. Манжуло, М. И. Сагатов, И. И. Финкельштейн и др.), показали, что наилучшие результаты дают целенаправленные упражнения по усвоению системы единиц измерения величин: сравнение единиц измерения, сравнение чисел, полученных от измерения с разными единичными соотношениями, сравнение чисел с одинаковыми числовыми характеристиками, но различными наименованиями, сравнение действий с числами без наименований и с наименованиями, имеющими одинаковые числовые характеристики.
Поискам приемов развития активности и самостоятельности учащихся школы VIII вида в процессе работы над арифметической задачей посвящено исследование А. А. Хилько, а развитию самостоятельности при выполнении домашних заданий — исследование А. Н. Ляшенко. Каждый исследователь убедительно показывает необходимость заданий репродуктивного характера для воспитания уверенности в самостоятельных действиях и формирования прочных знаний и умений. Однако по мере развития и коррекции познавательных способностей школьников показана необходимость заданий, требующих самостоятельного поиска, умозаключений, переноса знаний в новые или нестандартные ситуации, а также заданий практического характера (несложное моделирование, графические работы, измерения, дидактические игры, экскурсии и т. д.).
Значение и приемы развития мотивации в процессе обучения математике убедительно показаны в исследовании Ю. Ю. Пумпу-тиса, который пришел к выводам, что, когда действия учеников мотивированы, когда они могут полученные на уроках математики знания применить в своей бытовой или трудовой деятельности, качество усвоения математического материала возрастает. Развитию познавательного интереса к математике способствует в младших классах использование дидактических игр, занимательных упражнений, предметно-практической деятельности детей, а в старших классах осознание практической значимости математических знаний (М.Н. Перова).
Изучена проблема обучения школьников с интеллектуальным нарушением элементам наглядной геометрии. Разработаны задачи,
последовательность и система изучения геометрического материала, методы и средства обучения и контроля, организация обучения элементам наглядной геометрии, установление более тесной связи геометрических знаний с жизнью, профессиональным трудом (П. Г. Тишин, М. Н. Перова, В. В. Эк и др.).
Установлено, что неоднородность состава учащихся коррекционной школы, разные возможности усвоения математических знаний в зависимости от тяжести и степени дефекта требуют дифференцированного, индивидуального подхода на уроках математики (В. П. Гриханов, В. В. Эк).
Исследованы особенности использования чертежно-графичес-ких, измерительных и вычислительных навыков в трудовой деятельности учащихся коррекционной школы (Т. В. Варенова). Показано, что без специальной организации обучения профиль труда не оказывает должного влияния на математическую подготовку умственно отсталых школьников, в то время как уровень математических знаний, умений и навыков играет важную роль в овладении рабочей специальностью. Целенаправленная реализация межпредметных связей математики и профессионально-трудового обучения положительно повлияла на развитие измерительных и чертежных навыков, на возможность их использования в различных ситуациях.
В книге «Обучение учащихся I—IV классов коррекционной школы» (М., 1982), в главе «Обучение математике», написанной В. В. Эк, и в ее книге «Обучение математике учащихся младших классов вспомогательной школы» (М., 1990) большое внимание уделяется пропедевтике обучения математике, изучению возможностей детей с нарушением интеллекта в овладении математическими знаниями, реализации дифференцированного подхода на уроках математики, даются конкретные методические советы учителям младших классов, раскрыты интересные приемы формирования математических знаний у умственно отсталых школьников. Работе с геометрическим материалом посвящено методическое пособие В. В. Эк, М. Н. Перовой «Обучение элементам наглядной геометрии во вспомогательной школе» (М., 1983). В нем раскрываются задачи обучения наглядной геометрии, показаны особенности и трудности усвоения учащимися геометрических знаний, овладения измерительными, графическими и чертежными умениями как в младших, так и в старших классах.
В пособии описаны методы и приемы, формы организации обучения наглядной геометрии, дается описание средств обучения,
подробно изложена методика изучения всех программных тем, раскрыта связь изучения геометрического и арифметического материала, связь наглядной геометрии с профессионально-трудовой подготовкой учащихся. Значительное место в пособии отводится методике решения задач геометрического содержания.
Анализ методических основ преподавания математики в школе VIII вида дает возможность сделать заключение, что в настоящее время в методике обучения математике сделаны значительные шаги в поисках эффективных дидактических приемов корригирующего обучения математике на основе учета особенностей умственной деятельности учащихся и усвоения ими математических знаний.
Глава 2