Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Устройство автомобильного вентильного генератора с клювообразным ротором




 

1. Цель работы

Изучение устройства и принципа работы автомобиль­ного вентиль­ного генератора с клювообразным ротором (на примере генератора Г 250).

 

2. Краткие сведения

В настоящее время на автомобилях и тракторах с элек­тропус­ком применяются системы электропитания постоян­ного тока, так как при этом просто и надежно осуществляется параллельная работа ге­нератора с аккумуляторной батареей. Поэтому при применении на ав­томобиле в качестве источ­ника электропитания синхронного генера­тора переменного тока его мощность выпрямляется, т.е. в автотрак­торной сис­теме электропитания применяется вентильный генератор. Ге­нератор на автомобиле предназначен для питания всех элек­тропо­требителей автомобиля при работающем двигателе внутреннего сгора­ния.

Автомобильный вентильный генератор представляет собой синхрон­ную трехфазную машину с выпрямлением всей мощности полупроводнико­вым выпрямителем. Электриче­ская схема вентильного генератора пока­зана на рис. 3.1. Об­мотка возбуждения, питаемая постоянным током от выпря­мителя, создает магнитный поток возбуждения Ф (ротора). Магнитное поле возбуждения, вращаясь вместе с ротором, пересекает проводники фазных обмоток якоря, расположенные в пазах статора.

Вследствие этого в фазных обмотках якоря индуктируются переменные Э.Д.С. ЕФА, ЕФВ, ЕФС одинаковой величины и частоты, но сдвинутые по фазе на 120º.

 

Рис. 3.1. Электрическая схема вентильного генератора.

 

Э.Д.С. фазы обмотки якоря определяется выражением:

где - частота перемагничивания зубца якоря, сек;

kФ – коэффициент формы поля;

Ф – магнитный поток возбуждения (ротора), Вб;

W1 – число витков фазы обмотки якоря;

k0 – обмоточный коэффициент обмотки якоря;

n – частота вращения ротора генера­тора, об/мин

Величина линейной Э.Д.С. на выходе синхронного трехфазного генератора зависит от схемы соединения фазных обмоток статора:

при соединении в звезду (Y)

при соединении в треугольник (∆)

При подключении к обмотке якоря нагрузки Rнагр в обмотках яко­ря (статора) появляются токи IФА, IФВ, IФС. Магнитное после, соз­данное этими токами, вращаются в пространстве с той же скоростью, что и ротор, т.е. син­хронно. Отсюда и название синхронный генера­тор.

Рассмотрим работу трехфазного генератора с выпрямителем на нагрузку (Rнагр.) при со­единении обмотки якоря в звезду. Концы фазных обмоток генератора соединены с выпрямите­лем, собранным по трехфазной двухполупериодной схеме (схема А.Н.Ларионова). В этой схеме применены шесть вентилей. В верхней группе вентилей положи­тельной полярности (1,3,5) катоды электрически связаны между собой, в нижней группе вентилей отрицательной полярности (2,4,6) аноды электрически связаны между собой. Теоретически в такой схеме в проводящем направлении работают из верхней группы вентиль, у которого анод имеет наиболее высокий потенциал, и из нижней группы вентиль, у которого катод имеет более низкий потенциал. Следовательно, в любой момент времени ра­ботают два вентиля: один положительной полярности (верхний), другой отрицательной полярности (нижний) и каж­дый вентиль про­пускает ток в течение одной трети периода.

Отличительной особенностью автомобильного вентильного гене­ратора от генератора об­щепромышленного назначения является: мно­гополюсный ротор клювообразного типа с обмот­кой возбуждения, со­стоящей из одной катушки, размещенной внутри ротора; малая осевая длина и увеличенный диаметр электрической машины; малое число па­зов на полюс и фазу q£1 (реже 2).

где

z1 – число пазов якоря; р – число пар полюсов; m - чис­ло фаз.

Рис. 3.2. Клювообразный полюсный наконечник (6-ти полюсный)

 

Многополюсный ротор при одной катушке возбуждения получает­ся за счет применения полюсного наконечника специальной формы – клювообразный полюсный наконечник (рис. 3.2.). На рис. 3.3 приведе­на конструктивная схема магнитной системы и обмоток такого гене­ратора (продольный и поперечный разрез). При подаче постоянного напряжения на щетки 6 по обмотке возбуждения 2 протекает постоян­ный ток возбужде­ния IВ. На рис. 3.3 знаком «•» обозначен ток возбуждения, текущий на нас, знаком «+» - ток, текущий от нас. Ток возбуждения вызы­вает магнитный поток Ф, направленный по оси генератора. Силовая линия магнитного потока возбуждения показана пунктирной линией, а направление потока - стрелками.

Рис. 3.3. Конструктивная схема генератора.

1 – втулка; 2 – обмотка возбуждения; 3 – клювообразные полюсные наконечники; 4 – пакет якоря; 5 – обмотка якоря; 6 – щетки; 7 - контактные кольца; 8 – изоляционная втулка; 9 – вал.

 

Возникший маг­нитный поток проходит по магнитной цепи генератора, а именно, по втулке через стык между втулкой и кольцом полюсного наконечни­ка со стороны контактных колец (к.к.), по клювам по­люсного нако­нечника, по рабочему воздушному зазору, по зубцам пакета якоря, по ярму, зубцам, рабочему зазору, через клювы и сборное кольцо полюсного наконечника со стороны противоположной контактным коль­цам, через стык между сборным кольцом и втулкой возвращается на втулку. На рис. 3.3, показано, что магнитный поток выходит из клю­вов полюсного наконечника со стороны к.к. и выходит в клювы полюс­ного наконечника с про­тивоположной стороны, т.е. клювы одного по­люсного наконечника можно считать полюсами N, а клювы другого наконечника полюсами S. Таким образом, в рассматриваемой выше конст­рукции при одной катушке возбуждения имеем многополюсный ин­дуктор.

Малое число пазов на полюс и фазу позволяет применять пакет с малым числом пазов и технологичные обмотки. В этом случае об­мотки состоят из отдельных катушек. Так при q=0,5 каждая ка­тушка размещается на одном зубце, а при q=1,0 каждая катушка размещается на трех зубцах.

Устройство автомобильного вентильного генератора с клювообразным ротором рассмот­рим на примере генератора Г 250.

Генератор Г 250 (рис. 3.4 а и б) выполнен из следующих ос­новных узлов: якоря - статора, индуктора - ротора, крышек со сто­роны привода и контактных колец, вентилятора.

 

Рис. 3.4. а. Генератор Г 250

Рис. 3.4. Генератор Г 250

1 – обмотка якоря; 2 – пакет якоря; 3 – полюсный наконечник; 4 – обмотка возбуждения; 5 – втулка; 6 – вал; 7 – передняя крышка; 8 – вентилятор; 9 – шкив; 10 – подшипник передний; 11 – стакан; 12 – разрезное кольцо; 13 – шпонка; 14 – гайка; 15 – втулка; 16 – крышка подшипника; 17 – винт; 18 – задняя крышка; 19 – положительный теплоотвод БПВ; 20 – отрицательный теплоотвод БПВ; 21 – отрицательный вентиль; 22 – изоляционные втулки; 23 – вывод переменного тока БПВ; 24 – винт; 25 – подшипник задний; 26 – крышка подшипника; 27 – гайка; 28 – контактные кольца; 29 и 30 – отрицательная и положительная щетки; 31 – щеткодержатель; 32 – вывод Ш; 33 – винт щеткодержателя; 34 – каркас; 35 – стяжной винт; 36 – клемма «+»; 37 – клемма «-»; 38 – положительный вентиль.

 

Якорь состоит из пакета 2 и обмотки 1. Пакет 2 набирается из пластин электротехнической стали толщиною 1,0 мм каждая. Две край­ние пластины для увеличения жесткости изготовлены из стали 10 м имеют толщину 2±0,13 мм. Пластины по наружной поверхности пакета соеди­нены в шести местах сваркой. Пакет является магнитопроводом якоря.

Внутренняя часть пакета имеет 18 равномерно расположенных по окружности пазов тра­пецеидального сечения, в которые помещена распределенная однослойная обмотка якоря 1. На каждом зубце располо­жена одна катушка (всего 18 катушек). Каждая катушка обмотки 1 состоит из 13 витков медного провода марки ПЭВ-2 диаметром 1,35/1,46 мм. Катушки соединены в фазы: 1, 4, 7, 10, 13, 16 - в фазу А; 2, 5, 8, 11, 14, 17 - в фазу В; 3, 6, 9, 12, 15, 18 - в фазу С. Число витков в фазе - 78. Фазные обмотки со­единены по схе­ме "звезда". Выводы фазных обмоток для присоединения к выпрямите­лю снаб­жены наконечниками.

Индуктор состоит из вала 6, двух клювообразных наконечников (полюсных) 3, втулки 5, обмотки возбуждения 4 и контактных колец 28.

Втулка 5 и примыкающие к её торцам два клювообразных полюс­ных наконечника 3, имеющий каждый по шесть полюсов, образуют 12-полюсную магнитную систему.

Клювообразные полюсные наконечники 3 выполняются холодной штамповкой из полосо­вой стали толщиной 12 мм с последующей обра­боткой по наружному диаметру. Для снижения магнитного шума часть ротора наружной поверхности полюса имеет скосы (на сбегающем крае).

Обмотка возбуждения 4 наматывается на каркас 34 в несколько рядов и состоит из 490±10 витков медного провода марки ПЭВ-2 диаметром 0,74/0,83 мм. При намотке провод в рядах ук­ладывают плотно виток к витку и между рядами прокладывают слои конденса­торной бумаги. Сверху обмотку обклеивают крепированной бумагой, которая образует слой наружной изоля­ции. Сопротивление обмотки в холодном состоянии 3,7±0,2 Ома. Выводы обмотки возбужде­ния про­ходят между полюсами, в проточке торца полюсного наконечника со стороны контакт­ных колец, под изоляционными втулками контактных колец и припаиваются к двум изолиро­ванным друг от друга и от вала медным контактным кольцам 28.

Втулка 5 и полюсные наконечники 3 магнитопровода ротора, контактные кольца 28 закреплены на валу посредством прессовой посадки на накатку вала.

Ротор динамически балансирует в двух плоскостях, допустимая динамическая неуравно­вешенность в каждой плоскости 4 г∙см. На вал со стороны контактных колец установлен (по плотной посадке) шариковый подшипник 25.

Якорь и ротор для повышения электрической прочности, тепло­проводности и цементиро­вания витков катушек пропитывают компаун­дами или лаками.

Якорь генератора центрируется в расточках крышек 7 и 18. Крышки стягиваются че­тырьмя стяжными винтами 35.

Крышки 7, 18 выполняются из алюминиевого сплава методом литья под давлением. Поса­дочные места под подшипники и отвер­стия в лапах для крепления генератора к двигателю для предотвра­щения износов армированы стальными втулками. В крышках установ­лены закрытые шарикоподшипники 10, 25 с двухсторонним резиновым уплотнением и одноразовой кремний­органической смазкой.

Крышки со стороны привода (передняя) в сборе состоит из собственно крышки 7 и узла подшипника.

Крышка со стороны привода 7 снабжена двумя лапами для уста­новки генератора на дви­гателе и для осуществления натяжения при­водного ремня и имеет вентиляционные отверстия и два резьбовых отверстия для снятия крышки с вала в процессе разборки генерато­ра. В крышке установлен опорный подшипник 10, не допускающий осевого перемещения вала (наружная и внутренняя обоймы подшипни­ка не имеют осевого перемещения).

Крышка со стороны контактных колец (задняя) в сборе, состо­ит из собственно крышки 18, выпрямительного блока (19 ¸ 23) и щеткодержателя 31 со щетками 29 и 30;

Крышка со стороны контактных колец 18 имеет вентиляционные отверстия и лапу для крепления генератора на двигателе. На кры­шке двумя винтами 33 крепится пластмассовый щеткодержатель 31, в направляющих отверстиях которого находятся две прямоугольные щетки 29 и 30 марки M1 размерами 6,0x6,5x15 мм. Одна щетка 29 соединена с массой генератора, другая 30 - медным канатиком с клеммой Ш-32 генератора. При сборке в гнездо крышки 18 входит на­ружная обойма подшипника 26, насаженного внутренней обоймой плотно на вал. Гнездо допускает осевое перемещение наружной обой­мы подшипника, не­обходимое для выбора допусков при сборке генера­тора, а также для предотвращения заклини­вания машины при температурных изменениях размеров вала. Следовательно, подшипник со сто­роны контактных колец является направляющим.

Внутри крышки монтируется трехфазный двухполупериодный вы­прямительный блок ШВ-4-45; выполненный на автомобильных венти­лях типа ВА 20 (рис. 3.4 и рис. 3.5).

Блок состоит из положительного теплоотвода 19 с тремя впре­ссованными положитель­ными вентилями 37 типа ВА 20П и отрицатель­ного теплоотвода 20 с тремя впрессованными от­рицательными венти­лями 21 типа ВА 200. Теплоотвода - это пластины из алюминиевого сплава, в которых предусмотрены гнезда для запрессовывания вен­тилей.

Рис. 3.5. Выпрямительный блок БПВ-4-45.

19 и 20 – положительный и отрицательный теплоотводы; 37 и 21 - положительный и отрицательный вентили; 23 – вывод переменного тока БПВ

 

Положительный вентиль - это вентиль, у которого катод соединен с корпусом вентиля. Отрицательный вентиль - это вентиль, у ко­торого анод соединен с корпусом вентиля. Такое вы­полнение вентилей позволило существенно упростить выпрямительный блок.

Положительный теплоотвод 19 одновременно является положи­тельным выводом, отрица­тельный теплоотвод 20 - отрицательным выводом выпрямителя. Теплоотводы соединены между собой тремя винтами 23, изолированными от пластин втулками 22, 38. Винты 23, на которых происходит соединение катода положительного вентиля с анодом отрицательного вентиля и вывода фазной обмотки, являются выводом переменного тока выпрямителя «~». С указанных трех выводов 23 можно снимать переменное линейное напряжение ге­нератора.

Теплоотводы 19 и 20 имеют вентиляционные отверстия, причем отверстия в отрицатель­ном теплоотводе находятся против положи­тельных вентилей. Таким образом, вентили нахо­дятся в потоке ох­лаждающего воздуха, что и обеспечивает хорошее охлаждение вып­рямитель­ного блока.

Блок с помощью болта, который является плюсовой клеммой генератора 36 и винта 37, который является минусовой клеммой генератора, закрепляется в крышке генератора со сто­роны кон­тактных колец (рис. 3.4 б). Кроме того, для повышения вибропроч­ности предусмот­рено дополнительное крепление теплоотводов к крышке.

Выпрямительный блок БПВ-4-45 ремонтоспособен - можно про­водить замену вышедшего из строя вентиля.

Для охлаждения катушек обмотки якоря, обмотки возбуждения, контактных колец, а также кремниевых диодов выпрямителя в генераторе применена протяжная вентиляция, осуществляемая с помощью вентилятора 8, свя­занного с приводным шкивом 9 генератора. Крыль­чатка генератора штампования, изготовлена из тонколистовой стали и имеет десять лопастей. Шкив генератора литой из чугуна.

Разъемное соединение обмотки якоря с выпрямителем, осуществ­ляемое на клеммах вы­прямителя 23 (рис. 3.5), обеспечивает удоб­ство сборки и возможность разборки и ремонта гене­ратора. Вывод­ные болты генератора - клемма «+», «-» и «Ш» - расположены на торце крышки со стороны щеточного узла, что обеспечивает удоб­ный доступ к ним на автомобиле.

Генераторы переменного тока типа Г 250 устанавливаются как на легковых (ГАЗ-24, «Волга» - генератор Г 250 E1; «Москвич-408», - 412» - генератор Г 250 Ж1), так и на грузовых автомоби­лях малой и средней грузоподъемности с 12-вольтовой системой электрооборудования (ЗИЛ-130 - генератор Г 250 И1; ГАЗ 66 - ге­нератор Г 250 B1; ГАЗ 53 - генератор Г 250 Г1; УАЗ-451 Д - ге­нератор Г 250 A1). Все модификации генератора переменного тока типа Г 250 (Г 250 A1, -Б1, -B1, -Г1, -Д1, -E1, -И1, -Ж1) пол­ностью унифицированы, а отличаются лишь размерами приводных шкивов.

Привод генератора на автомобиле осуществляется, в основном от двигателя внутреннего сгорания через ременную передачу. Ремен­ная передача отличается эластичностью, бесшумно­стью в работе и простотой конструкции. Однако она имеет большие размеры (шкивы, ремень), значительный износ ремня и требует контроля и периоди­ческого натяжения ремня.

При ременной передаче обычно крепление генератора к двига­телю производят на крон­штейне. Применяют два варианта схем ременного привода:

- клиновидный ремень охватывает ведущий шкив, расположенный на коленчатом валу двигателя, шкив вентилятора и шкив генерато­ра (привод на три шкива);

- генератор приводится во вращение индивидуальным приводом.

 

3. Учебные пособия, приспособления и инструменты

3.1. Генератор Г 250 в сборе, разрезные образцы, щиты с де­талями и плакаты.

3.2. Приспособления и инструменты, необходимые для разборки и сборки генераторов.

 

4. Порядок проведения работы

4.1. Разобрать генератор.

4.2. Ознакомиться с устройством отдельных деталей и узлов генератора.

4.3. Вычертить электрическую схему соединения обмоток яко­ря, возбуждения и диодов выпрямителя и обозначить выводы гене­ратора.

4.4. Вычертить эскиз магнитной системы генератора (продоль­ный и поперечный разрезы) и разместить обмотки.

4.5. Определить количество пазов пакета, материал пазовой изоляции, количество катушек в якоре, число катушек в фазе, фор­му катушки, тип обмотки, дать эскиз паза.

4.6. Определить число полюсов, количество катушек, форму об­мотки возбуждения, крепление выводов обмотки и проследить прок­ладку выводов до контактных колец.

4.7. Вычертить эскиз устройства выпрямителя.

4.8. Вычертить эскиз устройства щеточно-контактного узла.

4.9. Вычертить эскиз системы вентиляции.

4.10.Вычертить эскиз установки (крепление) генератора на двигателе.

4.11. Нарисовать схему обмотки якоря.

4.12. Ознакомиться с параметрами генератора (мощность, напря­жение, начальная частота возбуждения генератора в режимах холос­того хода, расчетной и полной нагрузки).

4.13. Собрать генератор. Сборка генератора производится в последовательности, обратной процессу разборки генератора.

 

5. Содержание отчета

5.1. Тип изучаемого генератора и его краткая техническая характеристика.

5.2. Последовательность осуществления сборки генератора.

5.3. Описание принципа работы вентильного генератора с при­ведением электрической схемы вентильного генератора (схема вклю­чения обмоток генератора и диодов выпрямителя).

5.4. Краткое описание устройства клювообразного вентильного генератора.

5.5. Эскизы магнитной цепи генератора (продольный и попе­речный) с указанием пути основного магнитного потока.

5.6. Эскиз щеточно-контактного узла.

5.7. Эскиз выпрямительного блока.

5.8. Эскиз охлаждения генератора с указанием типа исполне­ния рассматриваемого генератора по способу охлаждения.

 

6. Контрольные вопросы

6.1. К какому типу генераторов относится автомобильный ге­нератор Г 250?

6.2. Из каких узлов и деталей состоит генератор и в какой последовательности осуществляется сборка генератора?

6.3. Что такое вентильный генератор и как он работает?

6.4. В чем особенности устройства вентильных автомобильных генераторов по сравнению с генераторами общепромышленного наз­начения?

6.5. Как устроен индуктор генератора?

6.6. Как устроен якорь?

6.7. Из какого материала выполнены втулка ротора, клювы, пакет якоря, крышки?

6.8. Каково назначение и устройство щеточно-контактного узла?

6.9. Каково назначение и устройство выпрямителя?

6.10. Что достигается применением в выпрямительном блоке дио­дов разной полярности?

6.11 Как осуществляется охлаждение генератора?

6.12.Какие подшипники применены в ге­нераторе?

 

 

ЛАБОРАТОРНАЯ РАБОТА № 4





Поделиться с друзьями:


Дата добавления: 2016-11-24; Мы поможем в написании ваших работ!; просмотров: 628 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Своим успехом я обязана тому, что никогда не оправдывалась и не принимала оправданий от других. © Флоренс Найтингейл
==> читать все изречения...

2396 - | 2210 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.013 с.