Тема 2.1 Общие закономерности обмена веществ, биоэнергетика
Основные понятия и термины по теме:
Обмен веществ; белки; аминокислоты; протеины; протеиды; углеводы; жиры; глицерин; глюкоза; витамины.
План изучения темы
1. Понятие об обмене веществ.
2. Обмен белков и его регуляция.
3. Обмен углеводов и его регуляция.
4. Обмен жиров и его регуляция
5. Водно-солевой обмен и его регуляция.
Краткое изложение теоретических вопросов:
Постоянный обмен веществ и энергии между организмом и окружающей средой является необходимым условием его существования и отражает их единство.
Сущность этого обмена заключается в том, что поступающие в организм питательные вещества, после пищеварительных превращений, используются как пластический материал.
Энергия, образующаяся при этом восполняет энергозатраты организма. Синтез сложных специфичных для организма веществ из простых соединений, всасывающихся в кровь, называется ассимиляцией или анаболизмом. Распад веществ организма до конечных продуктов, сопровождающийся выделением энергии называется диссимиляцией или катаболизмом. Эти процессы неразрывно связаны. Ассимиляция обеспечивает аккумуляцию энергии, а энергия выделяющаяся при диссимиляции необходима для синтеза веществ. Анаболизм и катаболизм объединены в единый процесс с помощью АТФ и НАДФ. Посредством их энергия, образующаяся в результате диссимиляции, передается для процессов ассимиляции.
Белки в основном являются пластическим материалом. Они входят в состав клеточных мембран, органелл. Белковые молекулы постоянно обновляются. Но это обновление происходит не только за счет белков пищи, но и посредством реутилизации собственных белков. Однако из 20 аминокислот, образующих белки, 10 являются незаменимыми. Т.е. они не могут образовываться в организме. Конечными продуктами распада белков являются такие азотсодержащие соединения, как мочевина, мочевая кислота, креатинин. Поэтому состояние белкового обмена можно оценить по азотистому балансу. Это соотношение количества азота поступающего с белками пищи и выделенного из организма с азотсодержащими продуктами обмена. В 100 г белке содержится около 16 г азота. Следовательно выделение 1 г азота свидетельствует о распаде в организме 6,25 г белка. Если количество выделяемого азота равно количеству поглощенного организмом имеет место азотистое равновесие. Если поступившего азота больше, чем выделенного, это называется положительным азотистым балансом. В организме происходит задержка или ретенция азота. Положительный азотистый баланс наблюдается при росте организма, при выздоровлении после тяжелых заболевания и после длительного голодания. Когда количество азота, выделенного организмом больше, чем поступившего, имеет место отрицательный азотистый баланс. Его возникновение объясняется преимущественным распадом собственных белков организма. Он возникает при голодании, отсутствии в пище незаменимых аминокислот, нарушениях переваривания и всасывания белка, тяжелых заболеваниях. Количество белка, которое полностью обеспечивает потребности организма называется белковым оптимумом. Минимальное, обеспечивающее лишь сохранение азотистого баланса - белковым минимумом. ВОЗ рекомендует потребление белка не менее 0,75 г на кг веса в сутки. Энергетическая роль белков относительно небольшая.
Жирами организма являются триглицериды, фосфолипиды и стерины. Основная их роль энергетическая. При окислении липидов выделяется наибольшее количество энергии, поэтому около половины энергозатрат организма обеспечивается липидами. Они также являются аккумулятором энергии в организме, потому что откладываются в жировых депо и используются по мере необходимости. Жир депо составляют около 15% веса тела. Жиры имеют определенную пластическую роль, так как фосфолипиды, холестерин, жирные кислоты входят в состав клеточных мембран и органелл. Кроме того, они покрывают внутренние органы. Например околопочечный жир способствует фиксации почек и предохранению их от механических воздействий. Липиды являются и источниками эндогенной воды. При окислении 100 г жира образуется около 100 г воды. Особую функцию выполняет бурый жир, располагающийся вдоль крупных сосудов и между лопаток. Содержащийся в его жировых клетках полипептид, при охлаждении организма, тормозит ресинтез АТФ за счет липидов. В результате резко усиливается теплопродукция. Большое значение имеют незаменимые жирные кислоты - линолевая, линоленовая и арахидоновая. Без них невозможен синтез фосфолипидов клеток, образование простагландинов и т.д. При их отсутствии задерживается рост и развитие организма.
Углеводы в основном играют энергетическую роль, так как служат основным источником энергии для клеток. Например, энергетические потребности нейронов покрываются исключительно глюкозой. Они аккумулируются в виде гликогена в печени и мышцах. Углеводы имеют определенное пластическое значение, так как глюкоза необходима для образования нуклеотидов и синтеза некоторых аминокислот.
Методы измерения энергетический баланса организма.
Соотношение между количеством энергии, поступившей с пищей, и энергии, выделенной во внешнюю среду называется энергетическим балансом организма. Существует 2 метода определения выделяемой организмом энергии.
1.Прямая калориметрия. Ее принцип основан на том, что все виды энергии в конечном итоге переходят в тепловую. Поэтому при прямой калориметрии определяют количество тепла, выделяемого организмом в окружающую среду за единицу времени. Для этого используют специальные камеры с хорошей теплоизоляцией и системой теплоообменных труб, по которым циркулирует и нагревается вода.
2.Непрямая калориметрия. Она заключается в определении соотношения выделенного углекислого газа и поглощенного кислорода за единицу времени. Это полный газовый анализ.
Основной обмен.
Количество энергии, которое затрачивается организмом на выполнение жизненно важных функций, называется основным обменом (ОО). Это затраты энергии на поддержание постоянства температуры тела, работу внутренних органов, нервной системы, желез. Основной обмен измеряется методами прямой и непрямой калориметрии при базисных условиях: лежа с расслабленными мышцами, при температуре комфорта, натощак (не раньше чем через 12 часов после еды). Согласно закону поверхности Рубнера и Рише, величина основного обмена прямопропорциональна площади поверхности тела. Это связано с тем, что наибольшее количество энергии тратится на поддержание постоянства температуры тела. Помимо этого на величину основного обмена влияют пол, возраст, условия окружающей среды, характер питания, состояние желез внутренней секреции, нервной системы. У мужчин основной обмен на 10% больше, чем у женщин. В среднем его величина у мужчин 1700 ккал/сут., у женщин 1550. У детей его величина, относительно веса тела, больше, чем в зрелом возрасте. У пожилых он наоборот меньше. В холодном климате или зимой основной обмен возрастает, летом снижается. При гипертиреозе он резко увеличивается, а гипотиреозе падает.
Общий обмен энергии.
Общий обмен энергии это сумма основного обмена, рабочей прибавки и энергии специфически-динамического действия пищи. Рабочая прибавка это энергозатраты на физическую и умственную работу. По характеру производственной деятельности и энергозатратам выделяют следующие группы населения:
1.Лица умственного труда (преподаватели, студенты, врачи и т.д.). Их энергозатраты 2200-3300 ккал/сут.
2.Работники занятые механизированным трудом (сборщики на конвейере). 2350-3500 ккал/сут.
3.Лица занятые частично механизированным трудом (шофера, токари, слесари). 2500-3700 ккал/сут.
4.Занятые тяжелым немеханизированным трудом (грузчики). 2900-4200 ккал/сут.
Специфически-динамическое действие пищи это энергозатраты на усвоение питательных веществ. Наиболее выражено он у белков. Меньше у жиров и углеводов. В частности белки повышают энергетический обмен на 30%, а жиры и углеводы на 15%.
Физиологические основы питания. Режимы питания
В зависимости от возраста, пола и профессии, потребление белков, жиров и углеводов должно составлять:
М I-IV групп | Ж I-IV групп | |
Белки | 96-108 г | 82-92 г |
Жиры | 90-120 г | 77-102 г |
Углеводы | 382-552 г | 303-444 г |
В прошлом веке Рубнер сформулировал закон изодинамии, согласно которому пищевые вещества могут взаимозаменяться по своей энергетической ценности. Однако он имеет относительное значение, так как белки, выполняющие пластическую роль, не могут синтезироваться из других веществ. Это же касается незаменимых жирных кислот. Поэтому требуется питание сбалансированное по всем веществам. Кроме того необходимо учитывать усвояемость пищи. Это соотношение всосавшихся и выделившихся с калом питательных веществ. Наиболее легко усваиваются животные продукты. Поэтому животный белок должен составлять не менее 50% суточного белкового рациона, но жиры не более 70% жирового.
Под режимом питания подразумевается кратность приемов пищи и распределение ее калорийности на каждый прием. При трехразовом питании на завтрак должно приходится 30% калорийности суточного рациона, обед 50%, ужин 20%. Интервал между завтраком и обедом не должен превышать 5 часов. Ужин должен быть не менее чем за 3 часа до сна. Часы приема пищи должны быть постоянными.
Обмен воды и минеральных веществ.
Содержание воды в организме в среднем 73%. Водный баланс организма поддерживается путем равенства потребляемой и выделяемой воды. Суточная потребность в ней составляет 20-40 мл/кг веса. С жидкостями поступает около 1200 мл воды, пищей 900 мл и 300 мл образуется в процессе окисления питательных веществ. Минимальная потребность в воде 1700 мл. При недостатке воды наступает дегидратация и если ее количество в организме снижается на 20% наступает смерть. Избыток воды сопровождается водной интоксикацией с возбуждением ЦНС и судорогами.
Натрий, калий, кальций, магний, хлор необходимы для нормального функционирования всех клеток. В частности они обеспечивают механизмы возникновения мембранного потенциала, потенциалов действия, регуляцию трансмембранного обмена и т.д.. Суточная потребность в натрии и калии 2-3 г, кальции 0,8 г, хлоре 3-5 г. Кальций необходим для формирования костного скелета. Кроме того он нужен для свертывания крови, регуляции клеточного метаболизма, генерации потенциалов действия и сокращения мышц и т.д.. Основная масса фосфора также сосредоточена в костях. Суточная потребность в нем 0,8 г. Большая часть железа содержится в гемоглобине и миоглобине. Железо обеспечивает связывание кислорода. Фтор входит в состав эмали зубов. Сера в состав белков и витаминов. Цинк является компонентом ряда ферментов и инсулина. Кобальт и медь необходимы для эритропоэза. Потребность во всех этих микроэлементах от десятков до сотен мг в сутки.
Тема 2.2 Гомеостаз
Основные понятия и термины по теме:
Гомеостаз; защитные барьеры организма.
План изучения темы
1. Понятие о внешней и внутренней среде организма.
2. Защитные барьеры организма.
Краткое изложение теоретических вопросов:
Способность к саморегуляции - это основное свойство живых систем Оно необходимо для создания оптимальных условий взаимодействия всех элементов, составляющих организм, обеспечения его целостности. Выделяют четыре основных принципа саморегуляции:
1. Принцип неравновесности или градиента. Биологическая сущность жизни заключается в способности живых организмов поддерживать динамическое неравновесное состояние, относительно окружающей среды. Например, температура тела теплокровных выше или ниже окружающей среды. В клетке больше катионов калия, а вне ее натрия и т.д. Поддержание необходимого уровня асимметрии относительно среды обеспечивают процессы регуляции.
2.Принцип замкнутости контура регулирования. Каждая живая система не просто отвечает на раздражение, но и оценивает соответствие ответной реакции действующему раздражению. Т.е. чем сильнее раздражение, тем больше ответная реакция и наоборот. Эта саморегуляция осуществляется за счет обратных положительных и отрицательных обратных связей в нервной и гуморальной системах регуляции. Т.е. контур регуляции замкнут в кольцо. Пример такой связи - нейрон обратной афферентации в двигательных рефлекторных дугах.
3.Принцип прогнозирования. Биологические системы способны предвидеть результаты ответных реакций на основе прошлого опыта. Пример - избегание болевых раздражений после предыдущих.
4. Принцип целостности. Для нормального функционирования живой системы требуется ее структурная целостность.
Учение о гомеостазе было разработано К. Бернаром. В 1878 г. он сформулировал гипотезу об относительном постоянстве внутренней среды живых организмов. В 1929 г. В. Кэннон показал, что способность организма к поддержанию гомеостаза является следствием систем регуляции в организме. Он же предложил термин “гомеостаз”. Постоянство внутренней среды организма (крови, лимфы, тканевой жидкости, цитоплазмы) и устойчивость физиологических функций является результатом действия гомеостатических механизмов. При нарушении гомеостаза, например клеточного, происходит перерождение или гибель клеток. Клеточный, тканевой, органный и другие формы гомеостаза регулируются и координируются гуморальной, нервной регуляцией, а также уровнем метаболизма.
Параметры гомеостаза являются динамическими и в определенных пределах изменяются под влиянием факторов внешней среды (например, рН крови, содержание дыхательных газов и глюкозы в ней и т.д.). Это связано с тем, что живые системы не просто уравновешивают внешние воздействия, а активно противодействуют им. Способность поддерживать постоянство внутренней среды при изменениях внешней, главное свойство отличающее живые организмы от неживой природы. Поэтому они весьма независимы от внешней среды. Чем выше организация живого существа, тем более оно независимо внешней среды (пример).
Комплекс процессов, которые обеспечивают гомеостаз, называется гомеокинезом. Он осуществляется всеми тканями, органами и системами организма. Однако наибольшее значение имеют функциональные системы.
Тема 2.3