Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


I. Физические основы классической механики




МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА

РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

КАЗАНСКИЙ ГОСУДАРСТВЕНЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ

Кафедра физики и математики

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

Для заочного отделения к выполнению

Контрольных работ по физике

(часть I «Механика, молекулярная физика»)

Казань – 2008

- 2 -

УДК - 51 (07)

ББК - 22.3р

 

Составители: к. ф.-м. н., доцент Гарифуллина Р.Л., к.ф.- м.н., доцент Лотфуллин Р.Ш. и к. б. н., доцент Никифорова В.И.

 

Редактор: к. ф. - м.н., доцент Лотфуллин Р.Ш.

 

Рецензенты: к.ф.- м.н., доцент кафедры общей физики Казанского государственного университета Ерёмина Р.М., д.т.н., профессор кафедры теории машин и механизмов КГАУ Яруллин М. Г.

 

Обсуждены и одобрены на заседании кафедры физики и математики 26 июня 2008 г., протокол № 9.

 

Обсуждены, одобрены и рекомендованы в печать методической комиссией ИМ и ТС КГАУ 18 сентября 2008 г., протокол № 1.

 

Методические указания составлены для студентов заочного отделения института механизации и технического сервиса при Казанском государственном аграрном университет.

 

 

УДК - 51 (07)

ББК - 22.3р

 

Ó Казанский государственный аграрный университет, 2008

 

– 3 –

ОБЩИЕ МЕТОДИЧЕСКИЕ УКАЗАНИЯ

К РЕШЕНИЮ ЗАДАЧ И ВЫПОЛНЕНИЮ

КОНТРОЛЬНЫХ РАБОТ

1.Часть I «Методических указаний к выполнению контрольных работ» предназначена для решения 2-х первых контрольных работ по общей физике студентами-заочниками Института механизации и технического сервиса (ИМ и ТС) с 6-летним сроком обучения и первой контрольной работы студентами ИМ и ТС с сокращённым сроком обучения.

2. Номера задач, которые студент с 6-летним сроком обучения должен включить в свои контрольные работы, определяются по таблицам вариантов на страницах 26 и 58. Номер варианта совпадает с последней цифрой шифра студента.

3. Для выполнения первой контрольной работы студент ИМ и ТС с сокращённым сроком обучения должен решить 4 задачи (1-ую, 3-ю, 5-ю и 7-ю) своего варианта (номер варианта совпадает с последней цифрой шифра студента) из таблицы на странице 22 и соответственно 4 задачи своего варианта из таблицы на странице 50 (всего 8 задач).

4.Контрольные работы нужно выполнять в школьной тетради, на обложке которой привести сведения, например, по следующему образцу:

Студент ИМ и ТС 2-го курса

Киселев А. В.,Шифр 07-25

Адрес: г. Альметьевск,

ул. Сергеева, 2, кв. 5. Контрольная работа №1 по физике.

5. Условия задач в контрольной работе надо переписать полностью без сокращений.Для замечаний преподавателя на страницах тетради оставлять поля.

6. В конце контрольной работы указать, каким учебником или учебным пособием студент пользовался при изучении физики (название учебника, автор, год издания). Это делается для того, чтобы рецензент в случае необходимости мог указать, что следует студенту изучить для завершения контрольной работы.

 

– 4 –

7. Высылать на рецензию следует одновременно не более одной работы. Во избежание одних и тех же ошибок очередную работу следует высылать только после получении рецензии на предыдущую. Если контрольная работа при рецензировании не зачтена, студент обязан представить ее на повторную рецензию, включив в нее те задачи, решения которых оказались неверными. Повторную работу необходимо представить вместе с не зачтенной.

8. Зачтенные контрольные работы предъявляются экзаменатору. Студент должен быть готов дать пояснения по существу решения задач, входящих в контрольные работы.

9.Решения задач следует сопровождать краткими, но исчерпывающими пояснениями; в тех случаях, когда это возможно, дать чертеж, выполненный с помощью чертежных принадлежностей.

10.Решать задачу надо в общем виде: т.е. выразить искомую величину в буквенных обозначениях величин, заданных в условии задачи. При таком способе решения не производятся вычисления промежуточных величин.

11.После получения расчетной формулы для проверки правильности ее следует подставить в правую часть формулы вместо символов величин обозначения единиц этих величин, произвести с ними необходимые действия и убедиться в том, что полученная при этом единица соответствует искомой величине. Если такого соответствия нет, то это означает, что задача решена неверно (см. пример 4 с. 14-15).

12.Числовые значения величин при подстановке их в расчетную формулу следует выражать только в единицах СИ. В виде исключения допускается выражать в любых, но одинаковых единицах числовые значения однородных величин, стоящих в числителе и знаменателе дроби и имеющих одинаковые степени (см. пример 6 с. 16-17).

13. При подстановке в расчетную формулу, а также при записи ответа числовые значения величин следует записывать как произведение десятичной дроби с однозначащей цифрой перед запятой на соответствующую степень десяти.

 

 

– 5 –

Например, вместо 3520 надо записать 3,52∙103, вместо 0.00129 записать 1,29∙10-3 и т.п.

14. Вычисления по расчетной формуле надо проводить с соблюдением правил приближенных вычислений. Как правило, окончательный ответ следует записывать с тремя значащими цифрами. Это относится и к случаю, когда результат получен с применением калькулятора

I. ФИЗИЧЕСКИЕ ОСНОВЫ КЛАССИЧЕСКОЙ МЕХАНИКИ

Основные формулы

Кинематическое уравнение движения материальной точки (центра масс твердого тела) вдоль оси x,.

х = f(t), где f(t) некоторая функция времени.

Проекция средней скорости на ось х

Средняя путевая скорость

где Ds – путь, пройденный точкой за интервал времени Dt. Путь Ds в отличие от разности координат Dx = x1x2 не может убывать и принимать отрицательные значения, т. е. Ds³O.

Проекция мгновенной скорости на ось х

Проекция среднего ускорения на ось х .

Проекция мгновенного ускорения на ось х

Кинематическое уравнение движения материальной точки по окружности

j=f(t), r=R=const.

Модуль угловой скорости

 

– 6 –

Модуль углового ускорения

Связь между модулями линейных и угловых величин, характеризующих движение точки по окружности:

, at = eR, an = w2 R,

где – модуль линейной скорости; at и аn – модули тангенциального и нормального ускорений; w – модуль угловой скорости; e – модуль углового ускорения; R – радиус окружности.

Модуль полного ускорения

, или а = R .

Угол между полным а и нормальным аn ускорениями

Кинематическое уравнение гармонических колебаний материальной точки

х = A cos(wt + j),

где х – смещение, А – амплитуда колебаний, w – угловая или циклическая частота, j – начальная фаза. Скорость и ускорение материальной точки, совершающей гармонические колебания:

; а = – Aw2 соs(wt + j).

Сложение гармонических колебаний одного направления и одинаковой частоты:

а) амплитуда результирующего колебания

;

б) начальная фаза результирующего колебания

Траектория точки, участвующей в двух взаимно перпендикулярных колебаниях,

х = А1 соswt; у= A2 соs(wt+j):

a) у= , если разность фаз j=0;

 

– 7 –

б) у= , если разность фаз j=±p;

в) =1, если разность фаз j=±p/2

Уравнение плоской бегущей волны

y = A cosw(t-x/ )

где у смещение любой из точек среды с координатой х в момент t, скорость распространения колебаний в среде.

Связь разности фаз Dj колебаний с расстоянием между точками среды, отсчитанным в направлении распространения колебаний:

где λ – длина волны.

Импульс материальной точки массой m, движущейся со скоростью ,

p =m

Второй закон Ньютона

dp = F dt,

где F – результирующая сила, действующая на материальную точку.

Силы, рассматриваемые в механике:

а) сила упругости

F =kx,

где k – коэффициент упругости (в случае пружины – жесткость); х – абсолютная деформация;

б) сила тяжести

P = mg;

в) сила гравитационного взаимодействия

,

где G – гравитационная постоянная, m1 и m2 – массы взаимодействующих тел, r –расстояние между телами (тела рассматриваются как материальные точки). В случае гравитационного взаимодействия силу можно выразить также через

 

– 8 –

напряженность гравитационного поля:

F = m g

г) сила трения скольжения

F=fN,

где f – коэффициент трения, N – сила нормального давления.

Закон сохранения импульса

,

или для двух тел (i=2)

m1 1+m2 2= m1 u 1 + m2 u2 ,

где и – скорости тел в момент времени, принятый за начальный;

u1 и u2 – скорости тех же тел в момент времени, принятый за конечный.

Кинетическая энергия тела, движущегося поступательно,

, или

Потенциальная энергия:

а) упругодеформированной пружины

П= ½ kx2

где k – жесткость пружины, х –абсолютная деформация;

б) гравитационного взаимодействия

,

где G – гравитационная постоянная, m1 и m2 – массы взаимодействующих тел, r –расстояние между ними (тела рассматриваются как материальные точки),

в) тела, находящегося в однородном поле силы тяжести,

П = mgh

где g — ускорение свободного падения; h — высота тела над уровнем, принятым за нулевой (формула справедли­ва при условии h<<R, где R –радиус Земли).

Закон сохранения механической энергии в поле консервативных сил

E=Т+П=const.

 

– 9 –

Работа А, совершаемая результирующей силой над материальной точкой:

А= F∙∆r∙cosα

и равна изменению кинетической энергии материальной точки:

A=DT=T2 - T1

Основное уравнение динамики вращательного движения относительно неподвижной оси z

Мz =Jze,

где Мz – результирующий момент внешних сил относительно оси z, действующих на тело, e – угловое ускорение, Jz – момент инерции относительно оси вращения.

Моменты инерции некоторых тел массой т относительно оси z, проходящей через центр масс:

а) стержня длиной l относительно оси, перпендику­лярной стержню:

б) обруча (тонкостенного цилиндра) относительно оси, перпендикулярной плоскости обруча (совпадающей с осью цилиндра):

Jz=mR2,

где R – радиус обруча (цилиндра);

в) диска (сплошного цилиндра) радиусом R относительно оси, перпендику­лярной плоскости диска:

Jz= ½ mR2.

Проекция на ось z момента импульса тела, вращающегося относительно неподвижной оси z:

Lz=Jzw,

где w – угловая скорость тела.

Закон сохранения момента импульса систем тел, вращающихся вокруг неподвижной оси z:

Jzw=const,

где Jz – момент инерции системы тел относительно оси z, w – угловая скорость вращения тел системы вокруг оси z.

 

– 10 –

Кинетическая энергия тела, вращающегося вокруг неподвижной оси z:

Т = ½ Jzw2, или .

Примеры решения задач

Пример 1. Уравнение движения материальной точки вдоль оси имеет вид x=A+Bt+Ct3, где A =2 м, В =1 м/с, С= –0.5 м/с3. Найти координату х, скорость x и ускорение аx точки в момент времени t =2с.

Решение. Координату х найдем, подставив в уравнение движения числовые значения коэффициентов А, В и С и времени t:

х = (2+1×2 – 0.5 23) м = 0.

Мгновенная скорость относительно оси х есть первая производная от координаты по времени:

.

Ускорение точки найдем, взяв первую производную от скорости по времени:

.

В момент времени t = 2с

x = (1-3×0,5×22) м/с= – 5 м/с; ах = б(— 0,5)×2 м/с2= – 6 м/с2.

Пример 2. Тело вращается вокруг неподвижной оси по закону j=А+Вt+Ct2, где А=10 рад, В =20 рад/с, С= – 2 рад/с2. Найти полное ускорение точки, находя­щейся на расстоянии r =0,1 м от оси вращения, для момента времени t=4 с.

Решение. Полное ускорение а точки, движущейся по кривой линии, может быть найдено как геометрическая сумма тангенциального ускорения аt, направленного по касательной к траектории, и нормального ускорения an, направленного к центру кривизны траектории (рис. 1):

а = at +an.

Так как векторы ат и аn взаимно перпендикулярны, то модуль ускорения

 

– 11 –

. (1)

Модули тангенциального и нормального ускорения точки вращающегося тела выражаются формулами аt = er, аn = w2r,

где w – модуль угловой скорости тела; e – модуль его углового ускорения. Подставляя выражения at и ап в формулу (1), находим

. (2)

Угловую скорость w найдем, взяв первую производную угла поворота по времени: .

В момент времени t=4c модуль угловой скорости

w=[20 + 2(-2)4] рад/с = 4 рад/с.

Угловое ускорение найдем, взяв первую производную от угловой скорости по времени:

e=dw/dt = 2С = — 4 рад/с2.

Подставляя значения w, e и r в формулу (2), получаем

а = 0,1 м/с2= 1,65 м/с2.

Пример 3. Ящик массой т1 = 20 кг соскальзывает по идеально гладкому лотку длиной l=2 м на неподвижную тележку с песком и застревает в нем. Тележка с песком массой m2=80 кг может свободно (без трения) перемещаться по рельсам в горизонтальном направлении. Определить скорость и тележки с ящиком, если лоток наклонен под углом a=30° к рельсам.

Решение. Тележку и ящик можно рассматривать как систему двух неупруго взаимодействующих тел.

Но эта система не замкнута, так как на нее действуют внешние силы: силы тяжести m1g и m2g и сила реакции N2 (рис. 2). Поэтому применить закон сохранения импульса к системе ящик – тележка нельзя. Но так как проекции указанных сил на направление оси х, совпадающей с направлением рельсов, равны

нулю, то проекцию импульса системы на это направление можно считать

– 12 –

постоянной, т. е.

Р1x+ р2x = p`1x + p`2x, (1),

где р1x и р2x – проекции импульса ящика и тележки с песком в момент падения ящика на тележку; p’1x и p'2x – те же величины после падения ящика. Рассматривая тела системы как материальные точки, выразим в равенстве (1) импульсы тел через их массы и скорости, учитывая, что р2x= 0 (тележка до взаимодействия с ящиком покоилась), а также что после взаимодействия оба тела системы движутся с одной и той же скоростью и:

m1 1x = (m1+ т2) и, или m1 1 cosa= (m1 +m2) и,

где 1– модуль скорости ящика перед падением на тележку; 1x = 1cosa – проекция этой скорости на ось х.

Отсюда (2)

Модуль скорости определим из закона сохранения энергии:

m1gh = ½ m1 , где h =lsina, откуда

= .

Подставив выражение в формулу (2), получим

После вычислений найдем

м/c.

Пример 4. При выстреле из пружинного пистолета вертикально вверх пуля массой m=20 г поднялась на высоту h=5 м. Определить жесткость k пружины пистолета, если она была сжата на ∆ х=10 см. Массой пружины и силами трения пренебречь.

Решение. Рассмотрим систему пружина – пуля. Так как на тела системы действуют только консервативные силы, то для решения задачи можно применить закон сохранения энергии в механике. Согласно ему полная механическая энергия E системы в начальном состоянии (в данном случае перед выстрелом)

– 13 –

равна полной энергии Е в конечном состоянии (когда пуля поднялась на высоту h), т.е.

Е12, или Т1122, (1)

где Т1, Т2, П1 и П2 – кинетические и потенциальные энергии системы в начальном и конечном состояниях.

Так как кинетические энергии пули в начальном и конечном состояниях равны нулю, то равенство (1) примет вид

П12. (2)

Примем потенциальную энергию пули в поле сил тяготения Земли, когда пуля покоится на сжатой пружине, равной нулю, а высота подъема пули будет отсчитываться от торца сжатой пружины. Тогда энергия системы в начальном состоянии будет равна потенциальной энергии сжатой пружины, т.е. П1= ½ k(∆x) 2, а в конечном состоянии – потенциальной энергии пули на высоте h, т.е. П2=mgh.

Подставив выражения П1 и П2 в формулу (2), найдем ½ k(∆x)2 =mgh, откуда

k=2mgh/x2. (3)

Проверим, дает ли полученная формула единицу жесткости k. Для этого в правую часть формулы (3) вместо величин подставим их единицы (единицу какой-либо величины принято обозначать символом этой величины, заключенным в квадратные скобки):

(1кг×1м×с-2×1м)/1м2=(1кг×м×с-2)/1м=1Н/м.

Убедившись, что полученная единица является единицей жесткости (1Н/м), подставим в формулу (3) значения величин и произведем вычисления:

Пример 5. Шар массой m1, движущийся горизонтально с некоторой скоростью , столкнулся с неподвижным шаром массой m2. Шары абсолютно упругие, удар прямой, центральный. Какую долю e своей кинетической энергии первый шар передал второму?

– 14 –

Решение. Доля энергии, переданной первым шаром второму, выразится соотношением

(1)

где Т1 – кинетическая энергия первого шара до удара; u2 и Т2 –скорость и кинетическая энергия второго шара после удара.

Как видно из формулы (1), для определения e надо найти u2. Согласно условию задачи, импульс системы двух шаров относительно горизонтального направления не изменяется и механическая энергия шаров в другие виды не переходит. Пользуясь этим, найдем:

M1 =m1u1+m2u2; (2)

(3)

Решив совместно уравнения (2) и (3) найдем :

Подставив это выражение u2 в формулу (1) и сократив на и m1, получим

Из найденного соотношения видно, что доля переданной энергии зависит только от масс сталкивающихся шаров.

Пример 6. Через блок в виде сплошного диска, имеющего массу m=80г (рис. 4), перекинута тонкая гибкая нить, к концам которой подвешены грузы с массами m1 =100г и m2 =200г. Определить ускорение, с которым будут двигаться грузы, если их предоставить самим себе. Трением и массой нити пренебречь.

Решение. Рассмотрим силы, действующие на каждый груз и на блок в отдельности. На каждый груз действуют две силы: сила тяжести и сила упругости (сила натяжения нити). Направим ось х вертикально

– 15 –

вниз и напишем для каждого груза уравнение движения (второй закон Ньютона) в проекциях на эту ось. Для первого груза

T1 - m1g = m1a (1)

для второго груза

m2g - T 2 = m2a (2)

Под действием моментов сил T1 и T2 относительно оси z, перпендикулярной плоскости чертежа и направленной за чертеж, блок приобретает угловое ускорение e. Согласно основному уравнению динамики вращательного движения,

, (3)

где ; – момент инерции блока (сплошного диска) относительно оси z.

Согласно третьему закону Ньютона, с учетом невесомости нити , . Воспользовавшись этим, подставим в уравнение (3) вместо и выражения Т1 и Т2, получив их предварительно из уравнений (1) и (2):

(m2g-m2a)r-(m1g+m1a)r=mr2a/(2r).

После сокращения на r и перегруппировки членов найдем

(4)

Формула (4) позволяет массы m1, m2 и m выразить в граммах, как они даны в условиях задачи, а ускорение – в единицах СИ. После подстановки числовых значений в формулу (4) получим

Пример 7. Маховик в виде сплошного диска радиусом R=0,2м и массой m=50 кг раскручен до частоты вращения n1=480 мин-1 и предоставлен сам

себе. Под действием сил трения маховик остановился через t=50c. Найти момент М сил трения.

Решение. Для решения задачи воспользуемся основным уравнением динамики вращательного движения в виде

(1)

– 16 –

где Мг –момент внешних сил (в данном случае момент сил трения), действующих на маховик относительно оси z, Jz –момент инерции маховика относительно оси z; Dw – изменение угловой скорости маховика за время .

Момент инерции маховика в виде сплошного диска определяется по формуле

Изменение угловой скорости Dw=w2-w1 выразим через конечную n2 и начальную п1 частоты вращения, пользуясь соотношением w = 2pn:

Dw=w2-w1 =2pn2-2pn1=2p(n2-n1).

Подставив в формулу (1) выражения Jz и Dw, получим

Mz=pmR2(n2-n1)/Dt. (2)

Проверим, дает ли расчетная формула единицу момента силы (Н×м). Для этого в правую часть формулы вместо символов величин подставим их единицы:

Подставим в (2) числовые значения величин и произведем вычисления, учитывая, что n1 =480мин-1=480/60с-1 = 8с-1:

Знак минус показывает, что момент сил трения оказывает на маховик тормозящее действие.

Пример 8. Платформа в виде сплошного диска радиусом R=1,5 м и массой m1=180 кг вращается около вертикальной оси с частотой n=10 мин-1. В центре платформы стоит человек массой m2=60 кг. Какую линейную скорость относительно пола помещения будет иметь, человек, если он перейдет на край платформы?

Решение. Согласно условию задачи, момент внешних сил относительно оси вращения z, совпадающей с геометрической осью платформы, можно считать равным нулю. При этом условии проекция Lz момента импульса системы платформа – человек остается постоянной:

 

 

– 17 –

Lz=Jzw = const, (1)

где Jz – момент инерции платформы с человеком относительно оси z; w – угловая скорость платформы. Момент инерции системы равен сумме моментов инерции тел, входящих в состав системы, поэтому в начальном состоянии Jz=J1+J2, а в конечном состоянии .

С учетом этого равенство (1) примет вид

(2)

где значения моментов инерции J1 и J2 платформы и человека соответственно относятся к начальному состоянию системы; и – к конечному.

Момент инерции платформы относительно оси z пpи переходе человека не изменяется

Moмент инерции человека относительно той же оси будет изменяться.

Если рассматривать человека как материальную точку, то его момент инерции J2 в начальном состоянии (в центре платформы) можно считать равным нулю. В конечном состоянии (на краю платформы) момент инерции человека J2’=m2R2. Подставим в формулу (2) выражения моментов инерции, начальной угловой скорости вращения платформы с человеком (w = 2pn) и конечной угловой скорости ( = /R, где – скорость человека относительно пола) ( m1R2+0) 2pn = ( m1R2 + m2R2) /R.

После сокращения на R2 и простых преобразований находим скорость:

= 2pnRm1 /(m1+2m2).

Произведем вычисления:

Пример 9. Ракета установлена на поверхности Земли для запуска в

вертикальном направлении. При какой минимальной скорости , сообщенной ракете при запуске, она удалится от поверхности на расстояние, равное радиусу

 

– 18 –

Земли (R = 6.37×106 м)? Всеми силами, кроме силы гравитационного взаимодействия ракеты и Земли, пренебречь.

Решение: Со стороны Земли на ракету действует сила тяжести, являющаяся потенциальной силой. При неработающем двигателе под действием потенциальной силы механическая энергия ракеты изменяться не будет. Следовательно.

Т1 + П1 = Т2 + П2, (1)

где Т1, П1 и Т2, П 2 – кинетическая и потенциальная энергии ракеты после выключения двигателя в начальном (у поверхности Земли) и конечном (на расстоянии, равном радиусу Земли) состояниях. Согласно условию задачи П1=0, Т2=0, T1= m 2 / 2, П2=mgR. Следовательно, и .

Пример 10. Точка совершает гармонические колебания с частотой v=10Гц. В момент, принятый за начальный, точка имела максимальное смещение: xmax= 1 мм. Написать уравнение колебаний точки и начертить её график.

Решение. Уравнение колебаний точки можно записать в виде

x = Asin(wt + j1), (1)

где А – амплитуда колебаний; w – циклическая частота, t – время; j1 – начальная фаза.

По определению, амплитуда колебаний A = xmax. (2)

Циклическая частота w связана с частотой n соотношением

w = 2pn, (3)

Для момента времени t=0 формула (1) примет вид xmax= Asinj1, откуда начальная фаза

j1 = arcsin = arcsin 1, или j1=(2k+l)×p/2 (k= 0, 1, 2,...).

Изменение фазы на 2p не изменяет состояния колеблющейся точки, поэтому можно принять j1 = p/2. (4)

С учетом равенств (2)-(4) уравнение колебаний примет вид

– 19 –

x=Asin(2pnt+p/2), или x = Acos2pnt,

где А=1мм=10-3м,

График соответствующего гармонического колебания приведен на рис.5.

 

 

Рис.5

 

 

Пример 11. Частица массой т= 0,01 кг совершает гармонические колебания с периодом Т= 2с. Полная энергия колеблющейся частицы

 

E=0,1мДж. Определить амплитуду А колебаний и наибольшее значение силы Fmax, действующей на частицу.

Решение. Для определения амплитуды колебаний воспользуемся выражением полной энергии частицы:

Е = ½ mw2A2,

где w = 2p/Т. Отсюда амплитуда

(1)

Так как частица совершает гармонические колебания, то сила, действующая на нее, является квазиупругой и, следовательно, может быть выражена соотношением F= – kx, где k – коэффициент квазиупругой силы; х – смещение колеблющейся точки. Максимальной сила будет при максимальном смещении xmax равном амплитуде:

Fmax=kA. (2)

Коэффициент k выразим через период колебаний:

k = mw2=m4p2 /T2. (3)

Подставив выражения (1) и (3) в (2) и произведя упрощения, получим

.

– 20 –

Произведем вычисления:

Пример 12. Складываются два колебания одинакового направления, выраженные уравнениями

где A1 = 3см, A2 =2см, t1, = 1/6с, t2=1/3с, T = 2с. Построить векторную диаграмму сложения этих колебаний и написать уравнение результирующего колебания.

Решение. Для построения векторной диаграммы сложения двух колебаний одного направления надо фиксировать какой-либо момент времени. Обычно векторную диаграмму строят для момента времени t = 0. Преобразовав оба уравнения к канонической форме x=Acos(wt+j), получим

Отсюда видно, что оба складываемых гармонических колебания имеют одинаковую циклическую частоту

w = 2p/T.

Начальные фазы первого и второго колебаний соответственно равны

Произведем вычисления:

– 21 –

Изобразим векторы a1 и А2. Для этого отложим от резки длиной А1 = 3 см и А2 = 2 см под углами j1= 30° в j2=60° к оси Ох. Результирующее колебание будет происходить с той же частотой w и амплитудой А, равной

геометрической сумме амплитуд a1 и A2: A = A1 +A2 Согласно теореме косинусов,

Начальную фазу результирующего колебания можно также определить непосредственно из векторной диаграммы (рис 6):

Произведем вычисления:

или j=0,735 рад.

 

Рис.6.

Так как результирующее колебание является гармоническим, имеет ту же частоту, что и слагаемые колебания, то его можно записать в виде

x=Acos(wt+j) где A = 4.84см, w = 3,14 с-1, j-=0,735рад.

Пример 13. Плоская волна распространяется вдоль прямой со скоростью = 20 м/с. Две точки, находящиеся на этой прямой на расстояниях x1=12м и x2 = 15м от источника волн, колеблются с разностью фаз Dj=0,75p. Найти длину волны l написать уравнение волны и найти смешение указанных точек в момент t=1,2 с, если амплитуда колебаний A = 0,1 м.

Решение: Точки, находящиеся друг от друга на расстоянии, равном длине волны l, колеблются с разностью фаз, равной 2p; точки, находящиеся друг от друга на любом расстоянии Dx, колеблются с разностью фаз, равной

Dj = Dx×2p/l = (x2-x1) ×2p/l..

Решая это равенство относительно l, получаем

l=2p(x2-x1)/Dj. (1)

 

– 22 –

Подставив числовые значения величин, входящих в выражение (1), и выполнив арифметические действия, получим

Для того чтобы написать уравнение плоской волны надо еще найти циклическую частоту w. Так как w=2p/T (T=l/ – период колебаний), то w=2pv/l.

Произведем вычисления:

Зная амплитуду А колебаний, циклическую частоту w и скорость v распространения волны, можно написать уравнение плоской волны для данного случая:

y=Acosw(t-x/ ), (2)

где А=0,1 м, w=5pс-1, =20 м/c.

Чтобы найти смещение y указанных точек, достаточно в уравнение (2) подставить значения t и x.

y1=0,1cos5p(1,2-12/20)м=0,1cos3p м=-0,1 м;

y2=0,1cos5p(1,2-15/20)м=0,1cos2,25p м=0,1cos0,25p м=0,071 м=7,1 см.

Контрольная работа 1

Таблица вариантов

Вариант Номера контрольных работ
                 
                 
                 
                 
                 
                 
                 
                 
                 
                 

 

– 23 –

101. Тело брошено вертикально вверх с начальной скоростью м/с. Когда оно достигло верхней точки полета из того же начального пункта, с той же начальной скоростью , вертикально вверх брошено второе тело. На каком расстоянии h от начального пункта встретятся тела? Сопротивление воздуха не учитывать.

102. Материальная точка движется прямолинейно с ускорением а=5м/с2. Определить, на сколько путь, пройденный точкой в п секунду, будет больше пути, пройденного в предыдущую секунду. Принять = 0.

103. Две автомашины движутся по дорогам, угол между которыми a=60° Скорость автомашин =54 км/ч и =72км/ч. С какой скоростью удаляются машины одна от другой?

104. Материальная точка движется прямолинейно с начальной скоростью =10м/с и постоянным ускорением а=5м/с2. Определить, во сколько раз путь Ds, пройденный материальной точкой, будет превышать модуль ее перемещения спустя t=3с после начала отсчета времени.

105. Велосипедист ехал из одного пункта в другой. Первую треть пути он проехал со скоростью =18 км/ч. Далее половину оставшегося времени он ехал со скоростью =22 км/ч, после чего до конечного пункта он шел пешком со скоростью =5 км/ч. Определить среднюю скорость < > велосипедиста.

106. Тело брошено под углом a=30° к горизонту со скоростью =30м/с. Каковы будут нормальное аn, тангенциальное аt ускорения тела через время t= 1c после начала движения?

107. Материальная точка движется по окружности с постоянной угловой скоростью w=p/6 рад/с. Во сколько раз путь Ds, пройденный точкой за время t=4с, будет больше модуля ее перемещения ? Принять, что в момент начала отсчета времени радиус-вектор r, задающей положение точки на окружности, относительно исходного положения был повернут на угол j0=p/3рад.

108. Материальная точка движется в плоскости xy согласно уравнениям

x =A1+B1t+C1t2 и у = A2+B2t+C2t2, где В1=7м/с, C1=2м/с2, В2=1м/с,

 

 

– 24 –

С2=0,2 м/с2. Найти модули скорости и ускорения точки в момент времени t = 5с.

109. По краю равномерно вращающейся с угловой скоростью w=1 рад/с платформы идет человек и обходит платформу за время t= 9,9с. Каково наибольшее ускорение а движения человека относительно Земли! Принять радиус платформы R = 2м.

110. Точка движется по окружности радиусом R = 30 см с постоянным угловым ускорением e. Определить тангенциальное ускорение аt точки, если известно, что за время t=4c она совершила три оборота и в конце третьего оборота ее нормальное ускорение аn=2,7 м/с2.

111. При горизонтальном полете со скоростью =250 м/с снаряд массой т=8 кг разорвался на две части. Большая часть массой m1 = 6 кг получила скорость u1= 400 м/с в направлении полета снаряда. Определить модуль и направление скорости и2 меньшей части снаряда.

112. С тележки, свободно движущейся по горизонтальному пути со скоростью =3 м/с, в сторону, противоположную движению тележки, прыгает человек, после чего скорость тележки изменилась и стала равной u1=4 м/с. Определить горизонтальную составляющую скорости u2 человека при прыжке относительно тележки. Масса тележки m1 = 210 кг, масса человека m2=70 кг.

113. Орудие, жестко закрепленное на железнодорожной платформе, производит выстрел вдоль полотна железной дороги под углом a=30° к линии горизонта. Определить скорость u2 отката платформы, если снаряд вылетает со скоростью u1 =480 м/с. Масса платформы с орудием и снарядами m2=18 масса снаряда т1 =60 кг.

114. Человек массой m1=70 кг, бегущий со скоростью =9км/ч, догоняет тележку массой m2=190кг, движущуюся со скоростью =3,6 км/ч, и вскакивает на нее. С какой скоростью станет двигаться тележка с человеком? С какой скоростью будет двигаться тележка с человеком, если человек до прыжка бежал навстречу тележке?

115. Конькобежец, стоя на коньках на льду, бросает камень массой т1=2,5 кг под

 

– 25 –

углом a= 30° к горизонту со скоростью = 10м/с. Какова будет начальная скорость движения конькобежца, если масса его m2=60 кг? Перемещением конькобежца во время броска пренебречь.

116. На полу стоит тележка в виде длинной доски, снабженной легкими колесами. На одном конце доски стоит человек. Масса его т1 = 60 кг, масса доски m2 = 20 кг. С какой скоростью (относительно пола) будет двигаться тележка, если человек пойдет вдоль нее со скоростью (относительно доски) =1м/с? Массой колес и трением пренебречь.

117. Снаряд, летевший со скоростью = 400 м/с, в верхней точке траектории разорвался на два осколка. Меньший осколок, масса которого составляет 40% от массы снаряда, полетел в противоположном направлении со скоростью u1 = 150 м/с. Определить скорость и2 большего осколка.

118. Две одинаковые лодки массами т = 200 кг каждая (вместе с человеком и грузами, находящимися в лодках) движутся параллельными курсами навстречу друг другу с одинаковыми скоростями =1м/с. Когда лодки поравнялись, то с первой лодки на вторую и со второй на первую одновременно перебрасывают грузы массами т1 = 200 кг. Определить скорости u1 и u2 лодок после перебрасывания грузов.

119. На сколько переместится относительно берега лодка длиной l=3,5 м и массой m1=200кг, если стоящий на корме человек массой т2=80кг переместится на нос лодки? Считать лодку расположенной перпендикулярно берегу.

120. Лодка длиной l=3м и массой т=120кг стоит на спокойной воде. На носу и корме находятся два рыбака массами т1=60кг и т2= 90кг. На сколько сдвинется лодка относительно воды, если рыбаки поменяются местами?

121. В деревянный шар массой m1 =8кг, подвешенный на нити длиной l=1,8 м, попадает горизонтально летящая пуля массой m2 = 4г. С какой

скоростью летела пуля, если нить с шаром и застрявшей в нем пулей отклонилась от вертикали на угол a = 3°? Размером шара пренебречь. Удар пули считать прямым, центральным.

 

– 26 –

122. По небольшому куску мягкого железа, лежащему на наковальне массой m1 =300кг, ударяет молот массой т2 =8кг. Определить КПД удара, если удар неупругий. Полезной считать энергию, затраченную на дефор­мацию куска железа.

123. Шар массой m1 =1кг движется со скоростью = 4м/с и сталкивается с шаром массой m2 = 2кг, движущимся навстречу ему со скоростью 2=3м/с. Каковы скорости u1 и u2 шаров после удара? Удар считать абсолютно упругим, прямым, центральным.

124. Шар массой т1 =3 кг движется со скоростью =2м/с и сталкивается с покоящимся шаром массой m2=5 кг. Какая работа будет совершена при деформации шаров? Удар считать абсолютно неупругим, прямым, центральным.

125. Определить КПД неупругого удара бойка массой т1 =0,5 т, падающего на сваю массой m2 = 120 кг. Полезной считать энергию, затраченную на вбивание сваи.

126. Шар массой т1 =4кг движется со скоростью =5м/с и сталкивается с шаром массой т2 =6кг, который движется ему навстречу со скоростью =2м/с. Определить скорости и1 и u2 шаров после удара. Удар считать абсолютно упругим, прямым, центральным.

127. Из ствола автоматического пистолета вылетела пуля массой m1= 10 г со скоростью =300м/с. Затвор пистолета массой m2 = 200 г прижимается к стволу пружиной, жесткость которой k = 25 кН/м. На какое расстояние отойдет затвор после выстрела? Считать, что пистолет жестко закреплен.

128. Шар массой т1 = 5 кг движется со скоростью = 1м/с и сталкивается с покоящимся шаром массой m2 = 2 кг. Определить скорости и1 и u2 шаров после удара. Удар считать абсолютно упругим, прямым, центральным.

129. Из орудия, не имеющего противооткатного устройства, производилась стрельба в горизонтальном направлении.





Поделиться с друзьями:


Дата добавления: 2016-11-24; Мы поможем в написании ваших работ!; просмотров: 7092 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Вы никогда не пересечете океан, если не наберетесь мужества потерять берег из виду. © Христофор Колумб
==> читать все изречения...

2307 - | 2123 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.016 с.