Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Применение дифференциальных уравнений первого порядка для решения задач

Раздел 1. Математический анализ

Тема 1.4. Дифференциальные уравнения и их применения в медицине

План

1. Основные понятия и определения дифференциального уравнения.

2. Методы решения некоторых дифференциальных уравнений.

3. Применение дифференциальных уравнений первого порядка для решения задач.

 

Основные понятия и определения дифференциального уравнения

Опр. Равенство, связывающее независимую переменную х, неизвестную функцию у = f(x), а так же её производные y’,y”,….. yn, называется обыкновенным дифференциальным уравнением.

F(x,y.y’,y”………) = 0, где F – известная функция, заданная в некоторой фиксированной области; х – независимая переменная; у – зависимая переменная; y’,y”,….. yn – её производные.

Опр. Решением дифференциального уравнения называется функция у = f(x), которая будучи представлена в уравнении F(x,y.y’,y”………) = 0, обращает его в тождество. График этой функции называется интегральной кривой.

Пример 1.1. Дифференциальное уравнение

Представим в виде: ; возьмём интеграл от левой и правой части уравнения: Получим – общее решение дифференциального уравнения, которое включает произвольную постоянную с.

 

Методы решения некоторых дифференциальных уравнений

Выбор метода решения дифференциального уравнения зависит от его вида.

Дифференциальные уравнения первого порядка с разделяющимися переменными.

Уравнения вида называется уравнением с разделяющимися переменными, если функция разлагаются на множители, зависящие каждый только от одной переменной:

После резделения переменных, когда каждый член будет зависеть только от одной переменной, общий интеграл уравнения находится почленным интегрированием:

Решением этого уравнения будет:

Пример 2.1. Найти решение уравнения: .

Разделим уравнение на множители, зависящие только от одной переменной:

Проинтегрируем левую и правую части:

Общее решение:

Линейные дифференциальные уравнения первого порядка.

Опр. Уравнения вида: , где – непрерывные функции, называются линейными дифференциальными уравнениями первого порядка.

При уравнение – называется линейным однородным уравнением. Общее решение:

При уравнение – называется линейным неоднородным уравнением. Общее решение:

 

Применение дифференциальных уравнений первого порядка для решения задач

Этапы решения задач с помощью дифференциальных уравнений:

1. Оформить условия, в которых протекают изучаемые процессы;

2. Выбрать зависимые и независимые переменные;

3. Определить функциональные зависимости между ними

4. Решение уравнения;

5. Анализ полученных решений.

В уравнениях, описывающих медико-биологические процессы, в качестве независимой переменной чаще всего используется временная компонента.

Размножение бактерий

Если бактерии обитают в благоприятной среде, то скорость размножения бактерий пропорциональна размеру популяции. Такое предположение описывается дифференциальным уравнением: где х – количество бактерий; k – коэффициент пропорциональности. Тогда, разделяя переменные и интегрируя левую и правую части уравнения получим: где N0 – начальное количество бактерий; N - количество бактерий в момент времени t.

Вычислим определённые интегралы:

Получим экспоненциальную кривую, которая зависит от времени и k. Если то количество бактерий будет возрастать по экспоненциальному закону, при , а при - оставаться на постоянном уровне.

 

N
N0
k<0
k = 0
k>0
t

 

 


Для определения значения k необходимо иметь дополнительные сведения об изменении численности бактерий за определённый промежуток времени.

Внутривенное введение глюкозы

При внутривенном введении с помощью капельницы скорость поступления глюкозы в кровь постоянна и равна с. В крови глюкоза разлагается и удаляется из кровеносной системы со скоростью, пропорциональной имеющемуся количеству глюкозы. Тогда дифференциальное уравнение, описывающее этот процесс, имеет вид: где х – количество глюкозы в крови в текущий момент времени; с – скорость поступления глюкозы в кровь; - положительная постоянная. Запишем это уравнение в виде:

Это неоднородное линейное дифференциальное уравнение первого порядка, и его общее решение находиться по формуле:

где k- постоянная интегрирования. Чтобы найти постоянную k, необходимо знать начальное значение глюкозы в крови х (0).

Тогда .

Частное решение уравнения имеет вид:

При увеличении времени уровень глюкозы в крови приближается к .



<== предыдущая лекция | следующая лекция ==>
Висновки до другого питання | Понятие себестоимости продукции. Виды себестоимости и цели их исчисления и использования. Понятие полной себестоимости продукции
Поделиться с друзьями:


Дата добавления: 2016-11-24; Мы поможем в написании ваших работ!; просмотров: 3280 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Студент может не знать в двух случаях: не знал, или забыл. © Неизвестно
==> читать все изречения...

2781 - | 2343 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.