ƒругие €зыки
ќхрана труда





Brian Greene on String Theory


In the year 1919, a virtually unknown German mathematician named Theodor Kaluza suggested a very bold and, in some ways, a very bizarre idea. He proposed that our universe might actually have more than the three dimensions than we are all aware of. That is in addition to left, right, back, forth and up, down, Kaluza proposed that there might be additional dimensions of space that for some reason we don't yet see. Now, when someone makes a bold and bizarre idea, sometimes that's all it is Ц bold and bizarre, but it has nothing to do with the world around us. This particular idea, however Ц although we don't yet know whether it's right or wrong, and at the end I'll discuss experiments which, in the next few years, may tell us whether it's right or wrong Ц this idea has had a major impact on physics in the last century and continues to inform a lot of cutting-edge research.

ѕредположить, предложить; смелы; осознавать, отдавать себе отчет в чем-то; странный; предлагать; значительный, основной, главный; толчок, вли€ние; иметь отношение к / не иметь отношени€ к чему-либо; современный.


Einstein realized that Newton had left something out of the story, because even Newton had written that although he understood how to calculate the effect of gravity, he'd been unable to figure out how it really works. How is it that the Sun, 93 million miles away, somehow it affects the motion of the earth? How does the Sun reach out across empty inert space and exert influence? And that is a task to which Einstein set himself Ц to figure out how gravity works.

ѕонимать; неспособный; описать (пон€ть), вы€снить; среда; передавать.


Einstein said space is nice and flat, if there's no matter present. But if there is matter in the environment, such as the Sun, it causes the fabric of space to warp, to curve. And that communicates the force of gravity. Even the earth warps space around it. Now look at the moon. The moon is kept in orbit, according to these ideas, because it rolls along a valley in the curved environment that the sun and the moon and the earth can all create by virtue of their presence. We go to a full-frame view of this. The earth itself is kept in orbit because it rolls along a valley in the environment that's curved because of the sun's presence.

ѕричина; жЄлоб, долина; благодар€; согласно; матери€; искривл€ть; деформировать.


Now, this idea was tested in 1919 through astronomical observations. It really works. It describes the data. And this gained Einstein prominence around the world. And that is what got Kaluza thinking. He, like Einstein, was in search of what we call a Ђunified theoryї. That's one theory that might be able to describe all of nature's forces from one set of ideas, one set of principles, one master equation, if you will. So Kaluza said to himself, Einstein has been able to describe gravity in terms of warps and curves in space Ц in fact, space and time, to be more precise.

ќбрести; точно.


So Kaluza says, maybe I can play the same game and describe electromagnetic force in terms of warps and curves. That raised a question: warps and curves in what? Einstein had already used up space and time, warps and curves, to describe gravity. There didn't seem to be anything else to warp or curve. So Kaluza said, well, maybe there are more dimensions of space. He said, if I want to describe one more force, maybe I need one more dimension. So he imagined that the world had four dimensions of space, not three, and imagined that electromagnetism was warps and curves in that fourth dimension. Now here's the thing: when he wrote down the equations describing warps and curves in a universe with four space dimensions, not three, he found the old equations that Einstein had already derived in three dimensions Ц those were for gravity Ц but he found one more equation because of the one more dimension. And when he looked at that equation. it was none other than the equation that scientists had long known to describe the electromagnetic force. Amazing Ц it just popped out. He was so excited by this realization that he ran around his house screaming, ЂVictory!ї Ц that he had found the unified theory.

ѕодн€ть; получать, выводить; ученые; взволнованный.


Now the first question was answered in 1926 by a fellow named Oskar Klein. He suggested that dimensions might come in two varieties Ц there might be big, easy-to-see dimensions, but there might also be tiny, curled up dimensions, curled up so small, even though they're all around us, that we don't see them.

“рактат; сразу; возникать; наблюдение; разновидности; маленький; скрученный.


Let me show you that one visually. So imagine you're looking at something like a cable supporting a traffic light. It's in Manhattan. You're in Central Park Ц it's kind of irrelevant Ц but the cable looks one dimensional from a distant viewpoint, but you and I all know that it does have some thickness. It's very hard to see it, though, from far away. But if we zoom in and take the perspective of, say, a little ant walking around Ц little ants are so small that they can access all of the dimensions Ц the long dimension, but also this clockwise, counter-clockwise direction.

—ветофор; не относ€щийс€ к делу; толщина; по часовой стрелке; наде€тьс€; оценить.


But this illustrates the fact that dimensions can be of two sorts: big and small. And the idea that maybe the big dimensions around us are the ones that we can easily see, but there might be additional dimensions curled up, sort of like the circular part of that cable, so small that they have so far remained invisible. Let me show you what that would look like.



Here is a little shape of a circle Ц so small that we don't see them. But if you were a little ultra microscopic ant walking around, you could walk in the big dimensions that we all know about Ц that's like the grid part Ц but you could also access the tiny curled-up dimension that's so small that we can't see it with the naked eye or even with any of our most refined equipment.

”совершенствованный; оборудование; запр€танные.


Well, it turns out that Einstein and Kaluza and many others worked on trying to refine this frame work and apply it to the physics of the universe as was understood at the time, and in detail it didn't work. In detail, for instance, they couldn't get the mass of the electron to work out correctly in this theory. So many people worked on it, but by the 40s, certainly by the 50s, this strange but very compelling idea of how to unify the laws of physics had gone away. Until something wonderful happened in our age. In our era, a new approach to unify the laws of physics is being pursued by physicists such as myself, many others around the world, it's called Superstring Theory..

ѕример; подход; следовать; захватывающа€; объединить.

So let me just tell you how that goes. Superstring theory Ц what is it? The idea is like this. So imagine we look at a familiar object, just a candle in a holder, and imagine that we want to figure out what it is made of. So we go on a journey deep inside the object and examine the constituents. So deep inside Ц we all know you go sufficiently far down, you have atoms. We also all know that atoms are not the end of the story. They have little electrons that swarm around a central nucleus with neutrons and protons. Even the neutrons and protons have smaller particles inside of them known as quarks. That is where conventional ideas stop.

«накомый; подсвечник; путешествие; изучать; составл€ющие; достаточно; вертетьс€; €дро; частицы; обычный.


Here is the new idea of string theory. Deep inside any of these particles, there is something else. This something else is this dancing filament of energy. It looks like a vibrating string Ц that's where the idea string theory comes from. And just like the vibrating strings that you just saw in a cello can vibrate in different patterns, these can also vibrate in different patterns. They don't produce different musical notes. Rather, they produce the different particles making up the world around us. So if these ideas are correct, this is what the ultra-microscopic landscape of the universe looks like. It's built up of a huge number of these little tiny filaments of vibrating energy, vibrating in different frequencies. The different frequencies produce the different particles. The different particles are responsible for all the richness in the world around us.

Ќить; виолончель; скорее, довольно-таки; пейзаж; большой, огромный; ответственный; богатство.


And there you see unification, because matter particles, electrons and quarks, radiation particles, photons, gravitons, are all built up from one entity. So matter and the forces of nature all are put together under the rubric of vibrating strings. And that's what we mean by a unified theory. Now here is the catch. When you study the mathematics of string theory, you find that it doesn't work in a universe that just has three dimensions of space. It doesn't work in a universe with four dimensions of space, nor five, nor six. It leads us right back to this idea of Kaluza and Klein Ц that our world, when appropriately described, has more dimensions than the ones that we see.

—ущность; вместе; название; иметь в виду; подвох; надлежаще.


But it raises the question: are we just trying to hide away these extra dimensions, or do they tell us something about the world? In the remaining time, I'd like to tell you two features of them. First is, many of us believe that these extra dimensions hold the answer to what perhaps is the deepest question in theoretical physics, theoretical science. And that question is this: when we look around the world, as scientists have done for the last hundred years, there appear to be about 20 numbers that really describe our universe. These are numbers like the mass of the particles, like electrons and quarks, the strength of gravity, the strength of the electromagnetic force Ц a list of about 20 numbers that have been measured with incredible precision, but nobody has an explanation for why the numbers have the particular values that they do.

ќсобенности; содержать; измер€ть; потр€сающий, неверо€тный; точность.


Now, does string theory offer an answer? Not yet. But we believe the answer for why those numbers have the values they do may rely on the form of the extra dimensions. And the wonderful thing is, if those numbers had any other values than the known ones, the universe, as we know it, wouldn't exist. This is a deep question. Why are those numbers so finely tuned to allow stars to shine and planets to form, when we recognize that if you fiddle with those numbers Ц if I had 20 dials up here and I let you come up and fiddle with those numbers, almost any fiddling makes the universe disappear. So can we explain those 20 numbers? And string theory suggests that those 20 numbers have to do with the extra dimensions. as in the older ideas of Kaluza and Klein.

ѕолагатьс€ на; светитьс€; существовать; возитьс€, измен€ть; тонко; настроенный; исчезнуть.


This is an example of something known as a Calabi-Yau shape Ц name isn't all that important. But as you can see, the extra dimensions fold in on themselves and intertwine in a very interesting shape, interesting structure. And the idea is that if this is what the extra dimensions look like, then the microscopic landscape of our universe all around us would look like this on the tiniest of scales.

«аворачиватьс€; переплетатьс€.


Consider this. If you look at the instrument, a French horn, notice that the vibrations of the airstreams are affected by the shape of the instrument. Now in string theory, all the numbers are reflections of the way strings can vibrate. So just as those airstreams are affected by the twists and turns in the instrument, strings themselves will be affected by the vibrational patterns in the geometry within which they are moving.

–ассматривать, считать; валторна; заметить, отметить; воздушный поток; изгибы.


And if we could calculate the allowed vibrational patterns, we should be able to calculate those 20 numbers. And if the answer that we get from our calculations agrees with the values of those numbers that have been determined through detailed and precise experimentation, this in many ways would be the first fundamental explanation for why the structure of the universe is the way it is. Now, the second issue that I want to finish up with is: how might we test for these extra dimensions more directly? Is this just an interesting mathematical structure that might be able to explain some previously unexplained features of the world, or can we actually test for these extra dimensions?



Here's how it goes. In CERN, Geneva, Switzerland,a machine is being built called the Large Hуdron Collider. It's a machine that will send particles around a tunnel, opposite directions, near the speed of light. Every so often those particles will be aimed at each other, so there's a head-on collision. The hope is that if the collision has enough energy, it may eject some of the debris from the collision from our dimensions, forcing it to enter into the other dimensions. How will we know it? Well, we'll measure the amount of energy after the collision, compare it to the amount of energy before, and if there's less energy after the collision than before, this will be evidence that the energy has drifted away. And if it drifts away in the right pattern that we can calculate, this will be evidence that the extra dimensions are there.

ѕротивоположный; близкой; столкновение; осколки; количество; доказательство, свидетельство.


Let me show you that idea visually. So imagine we have a certain kind of particle called a graviton Ц that's the kind of debris we expect to be ejected out if the extra dimensions are real. But here's how the experiment will go. You take these particles. You slam them together. You slam them together, and if we are right, some of the energy of that collision will go into debris that flies off into these extra dimensions. So this is the kind of experiment that we'll be looking at in the next five, seven to 10 years or so. And if this experiment bears fruit, if we see that kind of particle ejected by noticing that there's less energy in our dimensions than when we began, this will show that the extra dimensions are real.

Ќекоторый, определенный; сталкивать; вместе; приносить плоды.

Glossary of the Unit

bold смелый
bizarre причудливый, странный, эксцентричный
it has nothing to do with это не имеет никакого отношени€ к...
impact воздействие, вли€ние, толчок, импульс
cutting-edge современный, дающий преимущество
to bask наслаждатьс€, гретьс€
pervasive проникающий, распростран€ющийс€ повсюду
to resolve решать, разрешать, принимать решение
apocryphal неканонический, недостоверный
to affect затрагивать, вли€ть, воздействовать
inert инертный, в€лый, нейтральный, маловажный
exert influence оказывать вли€ние
medium среда
fabric структура, материал, выделка, ткань
warp деформаци€, искривление
curve кривизна, крива€
vallеy впадина, точка минимума, вм€тина
environment окружающа€ среда
by virtue of в силу, на основании
full-frame полноформатный
to gain приобретать, приносить
prominence известность, выдающеес€ положение
in search of в поисках
if you will если угодно
in terms of в переводе на, в терминах, с учетом; на €зыке
to derive выводить, получать
to pop out выскочить
a treatise on трактат, научный труд
dive(dove, dived) ныр€ть
curled-up свернутый, завитой
thickness толщина
ant муравей
to appreciate ценить, оценивать
grid решетка
to tuck подворачивать, засовывать, подгибать
refine усовершенствовать, уточн€ть, улучшать
framework структура, решетка, рамка, каркас, остов
compelling захватывающий, мощный, интригующий
to pursue следовать, рассматривать
to resurrect возрождать
sparkle блестеть
familiar знакомый
to figure out выводить, разгадывать, вычисл€ть
conventional общеприн€тый
swarm рой
cello виолончель
filaments волокно, нить накала
rubric категори€, разр€д, рубрика
appropriately соответствующе, подобающим образом
prediction предсказание, прогноз
to raise a question подн€ть вопрос
features черты, характеристики
incredible неверо€тный
precision точность
rely on полагатьс€ на
to fiddle легкомысленно относитьс€ к...,
intertwine переплетать, закручивать, сплетать
collision столкновение
to eject выталкивать, испускать
evidence свидетельство
to drift away разве€тьс€, уплыть
debris остатки, обломки, осколки
to slam со стуком захлопывать, врезатьс€
to bear fruit приносить плоды


Ø Ex. 1. Answer the questions:

1. What did Th. Kaluza suggest?

2. What idea had a major impact on physics?

3. Why does Brian Greene say that Einstein was basking in the glow? What kind of discovery did he make at that time?

4. What new project did he plan to launch?

5. What exactly didnТt Newton understand in the law of gravity?

6. When does the fabric of space warp and curve? Under what influence?

7. Why is the moon kept in its orbit?

8. What were both Kaluza and Einstein in search of?

9. In what terms did Kaluza want to describe gravity?

10. What made Kaluza cry ЂVictory!ї

11. How did Kaluza treat theory? Did he take it seriously or light-heartedly?

12. In what varieties might dimensions be described?

13. What does a cable look like from a distance?

14. If you went on a journey into any object, what would you see?

15. What are the 20 numbers that describe the world we live in?

16. What would fiddling with these 20 numbers result in? Why?

17. What does the microscopic landscape of our Universe look like in terms of geometry?

18. What are the vibrations of strings affected by?

19. What kind of vibrational patterns does Greene speak of?

20. What makes particles in the collider eject some energy into other dimensions?

21. How can we calculate the existence of other dimensions through the experiment with Hydron Collider?

22. Sum up the stages in science development which have led to understanding the multidimensionality of our Universe.

Ex. 2. Translate from Russian into English:

1. јбсолютно неизвестный немецкий ученый предположил, что наша ¬селенна€ может состо€ть из большего числа измерений, чем мы привыкли считать.

2. ѕо какой-то причине эти измерени€ не видны нам пока.

3. »ногда интересные идеи не имеют никакого практического применени€ дл€ нашего реального мира.

4. ќднако эта иде€ имела решающее вли€ние на физику в прошлом столетии.

5. ƒл€ начала нам нужно обратитьс€ к истории.

6. Ёто был год, когда Ёйнштейн купалс€ в лучах славы после открыти€ теории относительности.

7. »менно в это врем€ он решил попытатьс€ пон€ть всепроникающую силу прит€жени€.

8. ’от€ Ќьютон знал, как рассчитать силу прит€жени€, по его словам, он не был в состо€нии пон€ть, как собственно она работает.

9. Ёйнштейн за€вил, что пространство плоское и безм€тежное, когда в нем нет материи.

10. ≈сли же есть матери€, то она заставл€ет пространство искривл€тьс€ и деформироватьс€.

11. Ёйнштейн сумел описать гравитацию, использу€ пон€ти€ кривизны и деформаций.

12.  алуза предприн€л попытку описать электромагнитную силу через пон€ти€ кривизны и деформаций.

13.  алуза предположил, что электромагнитна€ сила представл€ет собой преломлени€ в виде деформаций и кривизны в четвертом измерении.

14.  алуза принадлежал к типу людей, которые не только всерьез относ€тс€ к теории, но могут жизнь положить за нее.

15.  л€йн предположил, что измерени€ могут быть двух видов: большие и маленькие.

16. Ќа рассто€нии лини€ электропередач выгл€дит одномерной, но мы знаем, что она обладает некоторой толщиной.

17. ¬сегда могут обнаружитьс€ дополнительные встроенные изогнутые размерности.

18. ќстаетс€ вопрос Ц применима ли эта теори€ на практике в той действительности, которую мы знаем хорошо.

19. ¬ наше врем€ подход к решению этих проблем совсем иной: теори€ струн предлагает по-новому взгл€нуть на старые проблемы.

20. Ќа первый взгл€д кажетс€, что о дополнительных измерени€х нет речи.

21. √лубоко внутри любого предмета можно обнаружить вибрирующие энергетические нити.

22. »менно они порождают частицы, из которых состоит мир вокруг нас. ¬се в нашем мире в своей основе имеет каркас из вибрирующих с разной частотой энергетических нитей (струн).

23. –азличные частицы отвечают за разнообразие и даже богатство нашего мира.

24. »так, все силы природы и матери€ приписываютс€ вибрирующим энергетическим нит€м, но именно здесь нас ожидает подвох Ц математически теори€ струн не применима без признани€ существовани€ дополнительных измерений в пространстве.

25. —уществуют 20 чисел, которые описывают математически реалии нашего мира.

26. Ёти числа известны с неверо€тной точностью, но никто не может объ€снить, почему величина их такова.

27. ≈сли изменить хот€ бы одно из этих чисел, мир в том виде, который привычен нам, исчезнет.

ѕоделитьс€ с друзь€ми:

ƒата добавлени€: 2016-11-23; ћы поможем в написании ваших работ!; просмотров: 337 | Ќарушение авторских прав

ѕоиск на сайте:

Ћучшие изречени€:

¬ моем словаре нет слова Ђневозможної. © Ќаполеон Ѕонапарт
==> читать все изречени€...

525 - | 477 -

© 2015-2023 lektsii.org -  онтакты - ѕоследнее добавление

√ен: 0.086 с.