Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Простейшие свойства колец.




Пусть (K,+, ·) — кольцо. Так как (K, +) — абелева группа, учитывая свойства групп получим

СВ-ВО 1. Во всяком кольце (K,+, ·) имеется единственный нулевой элемент 0 и для всякого a ∈ K имеется единственный противоположный ему элемент −a.

СВ-ВО 2. ∀ a, b, c ∈ K (a + b = a + c ⇒ b = c).

СВ-ВО 3. Для любых a, b ∈ K в кольце K существует единственная разность a − b, причем a − b = a + (−b). Таким образом, в кольце K определена операция вычитания, при этом она обладает свойствами 1′—8′.

СВ-ВО 4. Операция умножения в K дистрибутивна относительно операции вычитания, т.е. ∀ a, b, c ∈ K ((a − b)c = ac − bc ∧ c(a − b) = ca − cb).

Док-во. Пусть a, b, c ∈ K. Учитывая дистрибутивность операции · в K относительно операции + и определение разности элементов кольца, получим (a − b)c + bc = ((a − b) + b)c = ac, откуда по определению разности следует, что (a − b)c = ac − bc.

Аналогично доказывается правый закон дистрибутивности операции умножения относительно операции вычитания.

СВ-В 5. ∀ a ∈ K a0 = 0a = 0.

Доказательство. Пусть a ∈ K и b—произвольный элемент из K. Тогда b − b = 0 и поэтому, учитывая предыдущее свойство, получим a0 = a(b − b) = ab − ab = 0.

Аналогично доказывается, что 0a = 0.

СВ-ВО 6. ∀ a, b ∈ K (−a)b = a(−b) = −(ab).

Доказательство. Пусть a, b ∈ K. Тогда (−a)b + ab = ((−a) + a)b =

= 0b = 0. Значит, (−a)b = −(ab).

Аналогично доказывается равенство a(−b) = −(ab).

СВ-ВО 7. ∀ a, b ∈ K (−a)(−b) = ab.

Доказательство. В самом деле, применяя дважды предыдущее свойство, получим (−a)(−b) = −(a(−b)) = −(−(ab)) = ab.

ЗАМЕЧАНИЕ. Свойства 6 и 7 называют правилами знаков в кольце.

Из дистрибутивности операции умножения в кольце K относительно операции сложения и свойств 6 и 7 вытекает следующее

СВ-ВО 8. Пусть k, l—произвольные целые числа. Тогда ∀ a, b ∈ K (ka)(lb) = (kl)ab.

Подкольцо

Подкольцом кольца (K,+, ·) называется подмножество H множества K, которое замкнуто относительно операций + и ·, определенных в K, и само является кольцом относительно этих операций.

Примеры подколец:

Так, Z —подкольцо кольца (Q,+, ·), Q—подкольцо кольца (R,+, ·), Rn×n —подкольцо кольца (Cn×n,+, ·), Z[x]—подкольцо кольца (R[x],+, ·), D[a,b] —подкольцо кольца (C[a,b],+, ·).

Во всяком кольце (K,+, ·) само множество K, а также одноэлементное подмножество {0} являются подкольцами кольца (K,+, ·). Это так называемые тривиальные подкольца кольца (K,+, ·).

Простейшие свойства подколец.

Пусть H — подкольцо кольца (K,+, ·), т.е. (H,+, ·) само является кольцом. Значит, (H, +)—группа, т.е. H —подгруппа группы (K, +). Поэтому справедливы следующие утверждения.

СВ-ВО 1. Нулевой элемент подкольца H кольца K совпадает с нулевым элементом кольца K.

СВ-ВО 2. Для всякого элемента a подкольца H кольца K противоположный ему элемент в H совпадает с −a, т.е. с противоположным ему элементом в K.

СВ-ВО 3. Для любых элементов a и b подкольца H их разность в H совпадает с элементом a − b, т.е. с разностью этих элементов в K.

Признаки подкольца.

ТЕОРЕМА 1 (первый признак подкольца).

Непустое подмножество H кольца K с операциями + и · является подкольцом кольцаK тогда итолькотогда, когда оно удовлетворяет следующим условиям:

∀ a, b ∈ H a + b ∈ H, (1)

∀ a ∈ H − a ∈ H, (2)

∀ a, b ∈ H ab ∈ H. (3)

Док-во.

Необходимость. Пусть H — подкольцо кольца (K,+, ·). Тогда H —подгруппа группы (K, +). Поэтому по первому признаку подгруппы (в аддитивной формулировке), H удовлетворяет условиям (1) и (2). Кроме того, H замкнуто относительно операции умножения, определенной в K, т.е. H

удовлетворяет и условию (3).

Достаточность. Пусть H ⊂ K, H 6= ∅ и H удовлетворяет условиям (1) − (3). Из условий (1) и (2) по первому признаку подгруппы следует, что H —подгруппа группы (K, +), т.е. (H, +)—группа. При этом, так как (K, +)—абелева группа, (H, +) также абелева. Кроме того, из условия (3) следует, что умножение является бинарной операцией на множестве H. Ассоциативность операции · в H и ее дистрибутивность относительно операции + следуют из того, что такими свойствами обладают операции + и · в K.

ТЕОРЕМА 2 (второй признак подкольца).

Непустое подмножество H кольца K с операциями + и · является

подкольцом кольца K т. и т. т, когда оно удовлетворяет следующим условиям:

∀ a, b ∈ H a − b ∈ H, (4)

∀ a, b ∈ H ab ∈ H. (5)

Доказательство этой теоремы аналогично доказательству теоремы 1.

При этом используется теорема 2′ (второй признак подгруппы в аддитивной формулировке) и замечание к ней.

7.Поле (определение, виды, свойства, признаки).

Полем называется коммутативное кольцо с единицей e не равно 0, в котором всякий элемент, отличный отнуля имеет обратный.

Классическими примерами числовых полей являются поля (Q,+, ·), (R,+, ·), (C,+, ·).

СВОЙСТВО 1. Во всяком поле F справедлив закон сокращения

на общий множитель, отличный от нуля, т.е.

∀ a, b, c ∈ F (ab = ac ∧ a не равно 0 ⇒ b = c).

СВОЙСТВО 2. Во всяком поле F нет делителей нуля.

СВОЙСТВО 3. Кольцо (K,+, ·) является полем тогда и только

тогда, когда множество K \ {0} есть коммутативная группа относительно операции умножения.

СВОЙСТВО 4. Конечное ненулевое коммутативное кольцо (K,+, ·) без делителей нуля является полем.

Частное элементов поля.

Пусть (F,+, ·)—поле.

Частным элементов a и b поля F, где b не равно 0,

называется такой элемент c ∈ F, что a = bc.

СВОЙСТВО 1. Для любых элементов a и b поля F, где b не равно 0, существует единственное частное a/b, причем a/b= ab−1.

СВОЙСТВО 2. ∀ a ∈ F \ {0}

a/a= e и ∀ a ∈ F a/e= a.

СВОЙСТВО 3. ∀ a, c ∈ F ∀ b, d ∈ F \ {0}

a/b=c/d ⇔ ad = bc.

СВОЙСТВО 4. ∀ a, c ∈ F ∀ b, d ∈ F \ {0}

a/b*c/d=ac/bd

СВОЙСТВО 5. ∀ a ∈ F ∀ b, c, d ∈ F \ {0}

(a/b)/(c/d)=ad/bc

СВОЙСТВО 6. ∀ a ∈ F ∀ b, c ∈ F \ {0}

ac/bc=a/b

СВОЙСТВО 7. ∀ a ∈ F ∀ b, c ∈ F \ {0}

(a/b)/c=a/bc

 

СВОЙСТВО 8. ∀ a, b ∈ F ∀ c ∈ F \ {0}

ab/c=ab/c

Поле F, единица которого имеет конечный порядок p в группе (F, +), называется полем характеристики p.

Поле F единица, которого имеет бесконечный порядок в группе (F, +), называется полем характеристики 0.

8. Подполе (определение, виды, свойства, признаки)

Подполем поля (F,+, ·) называется подмножество S множества F, которое замкнуто относительно операций + и ·, определенных в F, и само является полем относительно этих операций.

Приведем некоторые примеры подполей Q—подполе поля (R,+, ·);

R—подполе поля (C,+, ·);

справедливы следующие утверждения.

СВОЙСТВО 1. Нулевой элемент подполя S поля F совпадает с

нулевым элементом поля F.

СВОЙСТВО 2. Для всякого элемента a подполя S поля F противоположный ему элемент в S совпадает с −a, т.е. с противоположным ему элементом в F.

СВОЙСТВО 3. Для любых элементов a и b подполя S поля F их

разность в S совпадает с a−b т.е. с разностью этих элементов в F.

СВОЙСТВО 4. Единица подполя S поля F совпадает с единицей

e поля F.

СВОЙСТВО 5. Для всякого элемента a подполя S поля F, от-

личного от нуля, обратный к нему элемент в S совпадает с a−1, т.е. с элементом, обратным к a в F.

Признаки подполя.

ТЕОРЕМА 1 (первый признак подполя).

Подмножество H поля F c операциями +, ·, содержащее ненулевой

элемент, является подполем поля (F,+, ·) тогда и только тогда, когда оно удовлетворяет следующим условиям:

∀ a, b ∈ H a + b ∈ H, (1)

∀ a ∈ H − a ∈ H, (2)

∀ a, b ∈ H ab ∈ H, (3)

∀ a ∈ H \ {0} a−1 ∈ H. (4)

ТЕОРЕМА2 (второй признак подполя).

Подмножество H поля F c операциями +, ·, содержащее ненулевой

элемент, является подполем поля (F,+, ·) тогда и только тогда, когда оно удовлетворяет следующим условиям:

∀ a, b ∈ H a − b ∈ H, (5)

∀ a ∈ H ∀ b ∈ H\{0} a/b ∈ H. (6)

10. Отношение делимости в кольце Z

Утверждение: для любых элементов a,b,c коммутативного кольца на множестве R, справедливы следующие импликации:

1) а|b, b|c => a|c

2) a|b, a|c => a| (b c)

3) a|b => a|bc

для любого a, b Z справедливо:

1) a|b ó ≠ b

2) a|b, b≠0 => |a|≤|b|

3)a|b и b|a ó |a|=|b|

Разделить с остатком целое число а на целое число b, значит найти такие целые числа q и r, что можно представить a=b*q + r, 0≤r≥|b|, где q – неполное частное, r- остаток

Теорема: Если a и b Z, b≠0, то а можно разделить на b с остатком,причем неполное частное и остаток определяются однозначно.

Следствие,если a и b Z, b≠0, то b|a ó

11. НОД и НОК

Наибольший общий делитель(НОД) чисел Z называется некоторое число d, удовлетворяющее следующим условиям

1) d является общим делителем т.е. d| , d| …d|

2) d делится на любой общий делитель чисел т.е. d| , d| …d| => d| , d| …d|

Утверждение: если ,то для чисел

существует единственный НОД=0,если целые числа не все равны нулю,то для них существует хотя бы один НОД и они имеют ровно два НОД, которые отличаются только знаками.

Теорема: для любого натурального числа n≥2 и любых целых чисел существует НОД,причем единственный такой что ( =((() )…, )

Наименьшим общим кратным (НОК) целых чисел называется любое целое число К, удовлетворяющее

1. ,

2. K делит любое общее кратное чисел

3.

Утверждение: если n≥2 и хотя бы одно из целых чисел равно нулю, то для них существует единственное НОК=0, если целые числа ≠0 для них существует хотя бы одно НОК,и они имеют ровно два НОК,которые отличаются только знаком.

Для целых чисел a и b выполняется следующее [a,b]=|a*b|/(a,b)

Теорема: для любых n≥2 и любых чисел существует единственное неотрицательное НОК, которое находится по формуле

[ ]=[…[

 






Поделиться с друзьями:


Дата добавления: 2016-11-24; Мы поможем в написании ваших работ!; просмотров: 2297 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Люди избавились бы от половины своих неприятностей, если бы договорились о значении слов. © Рене Декарт
==> читать все изречения...

2477 - | 2272 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.