Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Трёхмерные команды пакета plots.




В пространстве кроме декартовой системы координат используются и другие (см. значения опции coords в таблице опций трехмерной графики). Наиболее часто применяются цилиндрическая и сферическая системы координат. В пакете plots предусмотрены специальные команды, отображающие график функций двух независимых переменных в этих системах координат: cylinderplot() и sphereplot().

В цилиндрической системе координат положение точки задаётся углом поворота theta проекции её радиус-вектора на плоскость xy относительно положительного направления оси х, длиной r этой проекции и значением координаты z точки. Команда cylinderplot() отображает поверхность, заданную либо в виде явной функции, выражающей зависимость координаты r от двух других theta и z, либо в параметрическом виде, при котором каждая из координат определяется как функция двух параметров. В случае явного задания функции команда имеет следующий синтаксис:

cylinderplot(r-exp, theta=диапазон, z=диапазон)

Здесь первый аргумент r-exp является выражением от двух переменных theta и z и представляет явный вид задания функции.

Для параметрической функции используется другая её форма, в которой первый аргумент является трёхэлементным списком, представляющим зависимость трёх координат поверхности в цилиндрической системе координат через два параметра следующие два аргумента определяют диапазон изменения параметров поверхности:

cylinderplot([r-exp,theta-expr,z-expr], param1=диапазон, param2=диапазон)

Как и во всех графических командах, кроме указанных аргументов можно использовать любые опции трёхмерной графики. Рисунок, приведенный ниже демонстрирует построение поверхности в цилиндрической системе координат./

Замечание. Следует не забывать подключать пакет plots при обращении ко всем командам данного раздела. В наших примерах мы предполагаем, что он подключен.

Построение поверхности в цилиндрической системе координат (Круговой цилиндр радиуса 1 и высотой 2)

(Параметрически заданная поверхность)

(Спиральный цилиндр высотой 2)

В сферической системе координат положение точки определяется двумя углами и одним линейным размером. Первый угол theta, как и в цилиндрической системе координат, задаёт угол поворота проекции радиус-вектора точки на плоскость xy. Второй угол phi, который образует радиус-вектор точки с положительным направлением оси z декартовой системы координат. Линейная координата r представляет длину радиус-вектора точки. При работе с командой sphereplot(), как и в случае с командой построения поверхностей, заданных в цилиндрической системе координат, возможно либо явное задание поверхности, либо параметрическое. В первом случае необходимо в качестве первого аргумента передать выражение длины радиус-вектора через угловые координаты и задать их диапазоны изменения, во втором случае следует задать список сферических координат точек поверхности в форме выражений от двух параметров:

sphereplot(r-exp, theta=диапазон, phi=диапазон)
sphereplot([r-exp,theta-expr,phi-expr], param1=диапазон, param2=диапазон)

Рисунки, приведенные ниже, иллюстрируют построение поверхностей в сферической системе координат.





Поделиться с друзьями:


Дата добавления: 2016-11-24; Мы поможем в написании ваших работ!; просмотров: 349 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Ваше время ограничено, не тратьте его, живя чужой жизнью © Стив Джобс
==> читать все изречения...

2219 - | 2164 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.007 с.