Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Средства измерения ионизирующих излучений и методы контроля




Приборы и средства измерения по функциональному назначению делятся на дозиметрические, радиометрические, спектрометрические сигнализаторы и универсальные приборы.

Дозиметры – приборы, измеряющие экспозиционную или поглощенную дозы излучения или мощности этих доз, а также интенсивность излучения.

Радиометры – приборы, измеряющие активность нуклидов удельную и объемную активность, поток ионизирующих квантов, флюенс ионизирующих частиц.

Спектрометры – приборы, измеряющие распределение ионизирующих излучений по энергии, времени, массе и заряду элементарных частиц характеризующие поле ионизирующих излучений.

Универсальные приборы – приборы совмещающие функции дозиметра и радиометра, радиометра и спектрометра и т.п.

Блоки детектирования – конструктивное объединение детекторов излучений, электронных устройств формирования сигнала детектора и выходных устройств.

В приборах и средствах измерения ионизирующих излучений используются датчики, основанные на следующих методах дозиметрии.

Ионизационный метод. Ионизационный метод дозиметрии основан на измерении ионизации в газе, заполняющем регистрирующий прибор. Ионизация газа вызывается электронами, освобождающимися под воздействием γ или рентгеновского излучения. В камере находятся два измерительных электрода, на которые подано напряжение. Образовавшиеся ионы достигают электродов и возникает ток, который регистрируется прибором. Чем больше энергия излучения, тем больше ионов оно создает и тем больший ток создается на электродах. В зависимости от величины тока судят об энергии ионизирующего излучения.

Фотографический метод. Фотоэмульсия представляет собой совокупность мелких кристаллов бромистого серебра, взвешенных в слое желатина. Прохождение ионизирующего излучения через фотоэмульсию делает затронутые им кристаллы способными к проявлению. Метод фотодозиметрии ионизирующего излучения основан на том, что степень почернения дозиметрической фотопленки после облучения пропорциональна дозе излучения, прошедшего через эмульсию. Сравнивая почернение пленки, которую носит человек, с контрольной пленкой, находят дозу излучения, воздействовавшую на человека.

Сцинтилляционный метод. Сцинтилляционный метод дозиметрии рентгеновского и g-излучений основан на регистрации вспышек света, возникающих в сцинтилляторе под действием излучения. Сцинтиллятор – это специальное вещество – кристалл, пластмасса или даже газ, преобразующее энергию излучения в световые вспышки. Вспышки регистрируются фотоэлектронным умножителем, на выходе которого появляется ток. Этот ток измеряется, и по нему судят об излучении.

Люминесцентный метод. Некоторые люминесцирующие вещества могут накапливать часть энергии попадающего на них излучения, а затем после дополнительного воздействия, например, нагрева, и выдавать ее в виде свечения. Это свечение измеряется специальным прибором, и по интенсивности света оценивают дозу ионизирующего излучения, прошедшего через данное вещество.

Химический метод основан на измерении числа молекул или ионов, образующихся при поглощении излучения веществом.

Активационный метод основан на определении большой дозы и спектра нейтронов в присутствии интенсивного гамма излучения в результате ядерных реакций, происходящих при взаимодействии нейтронов с ядрами веществ.

 

3. Порядок выполнения практической работы с использованием прибора дозиметр цифровой “POISK - M”.

 

3.1. Подготовка дозиметра цифрового “POISK – M” к работе

Прибор представляет собой электронное устройство с микропроцессорным управлением для измерения мощности гамма-излучения. В качестве измерительного элемента используется датчик Гейгера-Мюллера. Информация выводится на цифровой многоразрядный ЖКИ.

Основные характеристики

Диапазон энергий – 0,05... 1,25 МэВ

Диапазон измерения – 0..,999 мкР/ч

Время измерения – 12 с/36 с

Погрешность измерения до 30%

Диапазон раб. температур – 0...+40 °С

Относительная влажность – до 80 %

Потребление – 10 мВт

Питание – 9 В, типа 6F22.

1 – вкл. питания 2 – клавиша Mode 3 – клавиша Start/stop

 

Рис. 3. Устройство дозиметра

 

Прибор имеет три элемента управления.

· Переключатель (1) предназначен для вкл./выкл. питания прибора.

· Красная клавиша М используется для входа/выхода в режим программирования (MODE) и смены значений полей.

· Синяя клавиша S используется для Start/Stop в режиме измерения излучения, а в режиме программирования для установки соответственных числовых значений.

Для включения прибора необходимо переключатель (1) установить в верхнее положение. Через 2 секунды selftest устройство готово к работе. На индикаторе будут показания:

1(или 2, 3, 4, 5) F1 (или F2) 0 (рис. 4).

 

Поле №2

S F2 0

 

Поле №1 Поле №3

Рис. 4. Показания на индикаторе дозиметра

 

Поле №1 – индикация установленного порога безопасности Р соответственно:

1 – 30 мкР/ч, 2 – 60 мкР/ч, 3 – 90 мкР/ч, 4 – 120 мкР/ч, 5 – 240 мкР/ч;

Поле №2 – индикация рабочего таймера F2 – 12 с,

F1 – 36 с;

Поле №3 – величина измеренного фона.

Для измерения гамма фона необходимо расположить прибор над оценочным местом и нажать синюю клавишу S.

Измерение можно производить в двух режимах:

F1 – нормальный, с таймером 36с.

F2 – ускоренный, с таймером 12с. (установка режима измерения - см. режим программирования.)

Работа дозиметра цифрового “POISK в нормальном и ускоренном режимах

Нормальный режим F1

В этом режиме время измерения составляет 36 с. В поле №3 будет отображаться величина измеренного излучения. По окончании измерения процесс остановится. Для повторения измерения требуется нажать синюю клавишу S. Для получения точной информации о гамма-фоне надо сделать 3 измерения, затем определить их среднеарифметическую величину.

Ускоренный режим F2

Время измерения составляет 12 с. Процесс непрерывный. После первых 12-и секунд процессор производит апроксимацию результата и величина фона будет уже определена. При дальнейших циклах измерения происходит уточнение результата путем вычисления среднеарифметического значения между предыдущим и каждым последующим циклом измерения фона. Дополнительных вычислений в этом режиме производить не требуется.

Каждый измеренный импульс гамма-излучения сопровождается звуковым сигналом.

Для облегчения оценки максимально допустимого фона в поле №1 устанавливается один из пяти порогов Р (см. режим программирования). Если измерение превысит установленный порог, то цифра в поле №1 начнет мигать в сопровождении звукового сигнала.

Режим программирования.

Для установки режима измерения (F1, F2) и порога безопасности (Р1, Р2, РЗ, Р4, Р5) необходимо войти в режим программирования (п. А), для этого прибор должен находиться в режиме STOP, а на индикаторе должно быть как на Рис. 5(или 2, 3, 4, 5) F1 (или F2) 0 (любое число). В это состояние прибор можно установить двумя способами:

1- после включения питания;

2- во время измерения нажать синюю клавишу S.

А) После нажатия красной клавиши М начнет мигать число в поле F.

С помощью синей клавиши S установите режим измерения F1= 36 c или F2= 12 c (пример на рис. 5).

 

F1 36

 

 

Рис. 5. Показания на индикаторе дозиметра.

B) Нажмите на красную клавишу М для установки порога безопасности Р. Величина этого порога устанавливается синей клавишей S (пример на рисунке 6).

P2 90

 

Рис. 6. Показания на индикаторе дозиметра

 

С) Нажмите на красную клавишу М для выхода из режима программирования. Устройство готово к работе.

После выключения питания прибора или отсоединения батарейки все настройки сохраняются.

При необходимости исследования объектов (продукты питания, материалы и т.д.) на загрязненность следует приблизить прибор к объекту. Если измеренные данные превышают естественный фон (5 – 40 мкР/ч в зависимости от местных условий) – это может свидетельствовать о радиационном загрязнении объекта.

 

Содержание экспериментальной части практической работы.

3.2.1. Измерение и оценка собственного радиационного фона в помещении лаборатории “Безопасности жизнедеятельности”.

1. Начертить план помещения, указать точки измерение радиационного фона как показано на рис. 7.

окно окно

1 2         3 4

дверь

Рис. 7. План помещения

 

2. Произвести замеры радиационного фона*. Заполнить данные по табл. 8.

Таблица 8

Оценка естественного радиационного фона

  Точки Данные замера РФ мкр/ч Средняя РФср. в точке
     
         
         
         
         
  Средняя величина РФ в помещении  
        Средн. РФср5=

*в каждой точке провести по три замера.

 

3. Сравнить величину РФ четырех точек с величиной Р5 пятой точки, расположенной в геометрическом центре помещения, если есть расхождения, объяснить вероятную их причину.

4. Полученную величину естественного радиационного фона в помещении сравнить с допустимой.

 

Содержание отчета

Отчет должен содержать:

1) титульный лист;

2) комплексную цель;

3) основные теоретические вопросы;

4) результаты замеров;

5) выводы по данным замерам.

Проверить усвоения знаний темы практического занятия, ответить на контрольные вопросы и тестовые задания.

 

4. Порядок выполнения практической работы с использованием прибора дозиметра–радиометра “ДРБП – 03”

 

4.1. Ознакомление с прибором дозиметра–радиометра “ДРБП – 03”

Назначение прибора дозиметра–радиометра “ДРБП – 03”

Дозиметр-радиометр ДРБП-03 предназначен для измерения мощности амбиентной эквивалентной дозы (далее МЭД) и эквивалентной дозы фотонного ионизирующего (рентгеновского и ) излучения (далее ЭД), плотности потока – α-, β- частиц (рис. 8).

 

Рис. 8. Дозиметр–радиометр.

 

Дозиметры-радиометры применяются для оперативного дозиметрического контроля радиационной обстановки, при составлении радиационных карт местности и исследовании радиационных аномалий, для обнаружения загрязнения одежды, стен, полов и др.

По устойчивости и прочности к климатическим и механическим воздействиям при эксплуатации дозиметры-радиометры относятся к группе исполнения V3 ГОС 12997-84. Вид климатического исполнения СЗ ГОСТ 12997-84.

Рабочие условия эксплуатации дозиметров-радиометров:

· температура окружающего воздуха от –20 °С до +50 °С;

· относительная влажность воздуха до 95 % при

35 °С;

· атмосферное давление 84 – 106,7 кПа;

· допускается использование в помещениях с плохой освещенностью и в темноте.

Техническая характеристика дозиметра– радиометра “ДРБП – 03”

Дозиметр-радиометр имеет диапазоны измерений, указанные в табл. 9.

Таблица 9

Диапазоны измерений дозиметра-радиометра

. п. Измеряемая величина Единицы измерения Тип блока Диапазон измерений
  Плотность потока α- частиц с-1см-2 (мин-1 см-2) БДБА-02 0.10-700.0 (6,0-42000)
  Плотность потока β- частиц с-1см-2 (мин-1 см-2) БДБА-02 0.10-700.0 (6,0-42000)
  Мощность эквивалентной дозы рентгеновского или γ– излучения мкЗв/чм Зв/ч пульт,БДГ01пульт 0.10-1000.0 0.01-3000
  Эквивалентная доза мЗв пульт 0.001-9999

Дозиметр-радиометр состоит из измерительного блока (далее "пульт") и сменных блоков детектирования БДБА-02, БДГ-01. В зависимости от применяемо блока детектирования (далее "блока") дозиметр-радиометр измеряет ионизирующее излучение, вид, энергетический диапазон и измеряемая величина которого указаны в таблице 10.

Таблица 10

Виды и энергетические диапазоны дозиметра-радиометра

  Пп. Вид ионизирующего излучения, измеряемая величина Энергетический диапазон измеряемого излучения или нуклида Тип блока
11. а-излучение    
12. Плотность потока – α- частиц Плутоний-239 БДБА-03
23. - β излучения    
24. Плотность потока – β- частиц от 0,15 до 3,5 МэВ БДБА-03
35. Рентгеновское и – γ- излучение    
36. Мощность эквивалентной дозы от 0,05 до 3,0 МэВ пульт, БДГ-03
37. Эквивалентная доза от 0,05 до 3,0 МэВ Пульт

 

Пределы допустимой основной погрешности дозиметра-радиометра при градуировке и проведении измерений в полях непрерывного излучения одного и того же радионуклида указаны в табл. 11.

Таблица 11

Пределы основной погрешности дозиметра-радиометра

п. Измеряемая величина Тип блока Радио - нуклид Основная погрешность для штатного режима, не более, % Основная погрешность для режима "поиск", не более, %
           
  Плотность Потока α- частиц в диапазоне 0.10-1.00 с-1см-2 1.00-600 с-1см-2 БДБА-02 Ри-239 ±(20+4/Р) ±20 не нормируете
  Плотность потока БДБА-02 Sr-90Y-90   не нормируете*
  β- частиц в диапазоне 0.10-1.00 с-1см-2 1.00-600 с-1см-2     ±(20+4/Р) ±20  
Мощность эквивалентной дозы в диапазоне 0.10-1.00 мкЗв/ч 1.0- 1000.0 мкЗв/ч Пульт-канал № 1, БДГ-01 Cs-137 ±(15+4/Н) ±15 не нормируете
в диапазоне 0.10-1.00 мЗв/ч 1.00 - 3000 мЗв/ч Пульт-канал № 2 Cs-137 ±(15+4/Н) ±15 не нормируете
  Эквивалентной дозы, мЗв при МЭД 0,001-3000 мЗв/ч пульт Cs-137 ±10     —

где Р – измеренное значение плотности потока – α- или β- излучения (с-1см-2);

Н – измеренное значение МЭД (в зависимости от диапазона мкЗв/ч или мЗв/ч).

Пределы допускаемой дополнительной погрешности измерений составляют:

± 10 % от показаний в нормальных условиях при изменении температуры в рабочем диапазоне температур от -10 до ±50°С

± 10 % от показаний дозиметра-радиометра в нормальных условиях при изменении относительной влажности воздуха до 95 % при температуре 35 °С;

± 10 % от показаний дозиметра-радиометра в нормальных условиях при работе постоянном магнитном поле напряженностью не более 318,3 А/м.

Чувствительность дозиметра-радиометра. Комплектность

Чувствительность (эффективность) дозиметра-радиометра при работе с различными блоками указана в таблице 12.

Таблица 12

Чувствительность дозиметра- радиометра

п/п Тип блока Чувствительность (Эффективность) Время измерения
  Пульт по Cs-137: - 2 встр. счетчика СБМ-32 - встр. счетчик СИ-34ГМ-1 14000-20000 имп/мкЗв 15-30 имп/мкЗв 12-26 9-18
  БДБА-02 по α- излучению (Ри-239) 15-25 % 20-70
  БДБА-02 по - Β- излучению (Sr-90Y-90) 55 - 70 % 12-24

Время установки рабочего режима не превышает 40с., при этом чувствительность дозиметров через 40 сек после включения не отличается от чувствительности через 15 мин после включения более, чем на ±10 %.

Нестабильность показаний дозиметров за 8 часов непрерывной работы не превышает ± 10 % от среднего значения показаний за этот промежуток времени.

Питание дозиметров-радиометров осуществляется от батареи "Корунд" или аккумуляторов "НИКА", 7Д-0.125 при напряжении 8,7 В.

Время работы от батареи типа 6F22 ("Корунд" и др.) составляет не менее 100 часов.

Ток, потребляемый дозиметром-радиометром при максимальном значении напряжения питания (8,7 В), не превышает 5 мА.

Дозиметры-радиометры выдерживают кратковременное облучение (в течение 5 мин) мощностью эквивалентной дозы рентгеновского или гамма-излучения 5 Зв/ч.

Радиационный ресурс дозиметров-радиометров

103 Гр (105 рад).

Дозиметр-радиометр обеспечивает звуковую сигнализацию при превышении установленного порога для каждого канала измерения.

В дозиметре-радиометре предусмотрена индикация на табло разряда батареи при падении напряжения питания ниже 7 В.

Таблица 13

Габаритные размеры и масса блоков

дозиметра-радиометра

п. Наименование блока Габаритные размеры, не более, мм Масса, не более, кг
  Пульт 181x125x62 0,85
  БДБА-02 77x34 0,25
  БДГ-01 34x147 0,2
  Штанга 3-коленная полная длина - 930 0,2
    Укладочный ящик   330x340x115 3,0 с полным комплектом ДРБП-0

Таблица 14

Комплект поставки дозиметра-радиометра

Наименование Количество
Пульт регистрации  
Блок детектирования БДБА-02  
Блок детектирования БДГ-01  
Штанга  
Аккумулятор  
Зарядное устройство  
Футляр  
Техническое описание, инструкция по эксплуатации, формуляр  

 

Внешний вид дозиметра в футляре представлен на рис. 9.

 

 


Рис. 9. Комплект основных элементов дозиметра-радиометра "ДРБП-03'

 





Поделиться с друзьями:


Дата добавления: 2016-11-23; Мы поможем в написании ваших работ!; просмотров: 1445 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Сложнее всего начать действовать, все остальное зависит только от упорства. © Амелия Эрхарт
==> читать все изречения...

2189 - | 2073 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.