Вирусы можно рассматривать двояко: как болезнетворные агенты и как агенты наследственности. Не все вирусы являются двойственными агентами; некоторые действуют только как болезнетворные, другие – только как агенты наследственности. Какую роль играет вирус, во многих случаях зависит от клетки хозяина и условий внешней среды.
Вирусы – это биологические объекты, имеющие свои особенности:
1. Содержат в своем составе только один из типов нуклеиновых кислот: РНК или ДНК.
2. Не обладают собственным обменом веществ. Для размножения используют обмен веществ клетки-хозяина, её ферменты и энергию.
3. Могут существовать только как внутриклеточные паразиты и не размножаются вне клеток тех организмов, в которых паразитируют (в отличие от бактерий вирус паразитирует на генетическом уровне).
История вирусологии началась с открытия вируса табачной мозаики (ВТМ). В 1892 г. Д. И. Ивановский установил, что сок пораженных мозаичной болезнью растений табака, пропущенный через фарфоровый бактериальный фильтр и свободный от бактерий, сохраняет инфекционность.
Вирио́н — полноценная вирусная частица, состоящая из нуклеиновой кислоты и капсида (оболочки, состоящей из белка и, реже, липидов) и находящаяся вне живой клетки. Вирионы большинства вирусов не проявляют никаких признаков биологической активности, пока не соприкоснутся с клеткой-хозяином, после чего образуют комплекс «вирус-клетка», способный жить и «производить» новые вирионы. При заражении клетки вирион либо вводит в клетку-хозяина только свой геном (например, бактериофаги), либо проникает в клетку практически полностью (большинство других вирусов).
Д. И. Ивановский доказал, что возбудитель мозаичной болезни неспособен расти на искусственных питательных средах и может размножаться только в клетках растения.
Вирусология - наука, изучающая морфологию, физиологию, генетику, экологию и эволюцию вирусов.
Слово «вирус» означало яд. Этот термин применил ещё Л. Пастер для обозначения заразного начала. В настоящее время под вирусом подразумеваются мельчайшие реплицирующиеся микроорганизмы, находящиеся всюду, где есть живые клетки. Открытие вирусов принадлежит русскому учёному Дмитрию Иосифовичу Ивановскому, который в 1892 году опубликовал работу по изучению мозаичной болезни табака. Д. И. Ивановский показал, что возбудитель этой болезни имеет очень малые размеры и не задерживается на бактериальных фильтрах, являющихся непреодолимым препятствием для мельчайших бактерий. Кроме того, возбудитель мозаичной болезни табака не способен культивироваться на искусственных питательных средах. Д. И. Ивановский открыл вирусы растений.
В 1898 году Леффлер и Фрош показали, что широко распространённая болезнь крупного рогатого скота - ящур вызывается агентом, который также проходит через бактериальные фильтры. Этот год считается годом открытия вирусов животных.
В 1901 году Рид и Кэррол показали, что фильтрующиеся агенты можно выделить из трупов людей, умерших от жёлтой лихорадки. Этот год считается годом открытия вирусов человека.
Д'Эррель и Туорт в 1917-1918 г.г. обнаружили вирусы у бактерий, назвав их «бактериофагами». Позднее были выделены вирусы из насекомых, грибов, простейших.
Вирусы до сих пор остаются одними из главных возбудителей инфекционных и неинфекционных заболеваний человека. Около 1000 различных болезней имеют вирусную природу. Вирусы и вызываемые ими болезни человека являются объектом изучения медицинской вирусологии.
29 принципы классификации вирусов. Особенности биологии вирусов.
Вирусы имеют кардинальные отличия от других прокариотических микроорганизмов:
1. Вирусы не имеют клеточного строения. Это доклеточные микроорганизмы.
2. Вирусы имеют субмикроскопические размеры, варьирующие у вирусов человека от 15-30 нм до 250 и более нм.
3. Вирусы имеют в своём составе только один тип нуклеиновой кислоты: или ДНК, или РНК, где закодирована вся информация вируса.
4. Вирусы не обладают собственными метаболическими и энергетическими системами.
5. Размножение вирусов происходит с использованием белоксинтезирующих и энергетических систем клетки-хозяина, поэтому вирусы облигатные внутриклеточные паразиты.
6. Вирусы не способны к росту и бинарному делению. Они размножаются путём репродукции их белков и нуклеиновой кислоты в клетке хозяина с последующей сборкой вирусной частицы.
В силу своих особенностей вирусы выделены в отдельное царство Vira, включающее вирусы позвоночных и беспозвоночных животных, растений и простейших. В основу современной классификации вирусов положены следующие основные критерии:
1. Тип нуклеиновой кислоты (РНК или ДНК), её структура (одно- или двунитчатая, линейная, циркулярная, непрерывная или фрагментированная).
2. Наличие липопротеидной оболочки (суперкапсида).
3. Стратегия вирусного генома (т.е. используемый вирусом путь транскрипции, трансляции, репликации).
4. Размер и морфология вириона, тип симметрии, число капсомеров.
5. Феномены генетических взаимодействий.
6. Круг восприимчивых хозяев.
7. Патогенность, в том числе патологические изменения в клетках и образование внутриклеточных включений.
8. Географическое распространение.
9. Способ передачи.
10. Антигенные свойства.
На основании 1 и 2 критериев вирусы делятся на подтипы и семейства, на основании нижеперечисленных признаков - на роды, виды, серовары. Название семейства оканчивается на «viridae», некоторые семейства делятся на подсемейства (оканчивается «virinae»), рода - «vims». Вирусы человека и животных распределены в 19 семействах: 13- РНК-геномных и 6 - ДНК-геномных.
30 типы взаимодействия вирусов с клеткой. Фазы репродукции вирусов.
Типы взаимодействия вируса с клеткой. Различают три типа взаимодействия вируса с клеткой: продуктивный, абортивный и интегративный.
Продуктивный тип — завершается образованием нового поколения вирионов и гибелью (лизисом) зараженных клеток (цитолитическая форма). Некоторые вирусы выходят из клеток, не разрушая их (нецитолитическая форма).
Абортивный тип — не завершается образованием новых вирионов, поскольку инфекционный процесс в клетке прерывается на одном из этапов.
Интегративный тип, или вирогения — характеризуется встраиванием (интеграцией) вирусной ДНК в виде провируса в хромосому клетки и их совместным сосуществованием (совместная репликация).
Репродукция вирусов осуществляется в несколько стадий, последовательно сменяющих друг друга: адсорбция вируса на клетке; проникновение вируса в клетку; «раздевание» вируса; биосинтез вирусных компонентов в клетке; формирование вирусов; выход вирусов из клетки.
Адсорбция. Взаимодействие вируса с клеткой начинается с процесса адсорбции, т. е. прикрепления вирусов к поверхности клетки. Это высокоспецифический процесс. Вирус адсорбируется на определенных участках клеточной мембраны — так называемых рецепторах. Клеточные рецепторы могут иметь разную химическую природу, представляя собой белки, углеводные компоненты белков и липидов, липиды. Число специфических рецепторов на поверхности одной клетки колеблется от 104до 105. Следовательно, на клетке могут адсорбироваться десятки и даже сотни вирусных частиц.
Проникновение в клетку. Существует два способа проникновения вирусов животных в клетку: виропексис и слияние вирусной оболочки с клеточной мембраной. При виропексисе после адсорбции вирусов происходят инвагинация (впячивание) участка клеточной мембраны и образование внутриклеточной вакуоли, которая содержит вирусную частицу. Вакуоль с вирусом может транспортироваться в любом направлении в разные участки цитоплазмы или ядро клетки. Процесс слияния осуществляется одним из поверхностных вирусных белков капсидной или суперкапсидной оболочки. По-видимому, оба механизма проникновения вируса в клетку не исключают, а дополняют друг друга.
«Раздевание». Процесс «раздевания» заключается в удалении защитных вирусных оболочек и освобождении внутреннего компонента вируса, способного вызвать инфекционный процесс. «Раздевание» вирусов происходит постепенно, в несколько этапов, в определенных участках цитоплазмы или ядра клетки, для чего клетка использует набор специальных ферментов. В случае проникновения вируса путем слияния вирусной оболочки с клеточной мембраной процесс проникновения вируса в клетку сочетается с первым этапом его «раздевания». Конечными продуктами «раздевания» являются сердцевина, нуклеокапсид или нуклеиновая кислота вируса.
Биосинтез компонентов вируса. Проникшая в клетку вирусная нуклеиновая кислота несет генетическую информацию, которая успешно конкурирует с генетической информацией клетки. Она дезорганизует работу клеточных систем, подавляет собственный метаболизм клетки и заставляет ее синтезировать новые вирусные белки и нуклеиновые кислоты, идущие на построение вирусного потомства.
Реализация генетической информации вируса осуществляется в соответствии с процессами транскрипции, трансляции и репликации.
Формирование (сборка) вирусов. Синтезированные вирусные нуклеиновые кислоты и белки обладают способностью специфически «узнавать» друг друга и при достаточной их концентрации самопроизвольно соединяются в результате гидрофобных, солевых и водородных связей.
Существуют следующие общие принципы сборки вирусов, имеющих разную структуру:
1. Формирование вирусов является многоступенчатым процессом с образованием промежуточных форм;
2. Сборка просто устроенных вирусов заключается во взаимодействии молекул вирусных нуклеиновых кислот с капсидными белками и образовании нуклеокапсидов (например, вирусы полиомиелита). У сложно устроенных вирусов сначала формируются нуклеокапсиды, с которыми взаимодействуют белки суперкапсидных оболочек (например, вирусы гриппа);
3. Формирование вирусов происходит не во внутриклеточной жидкости, а на ядерных или цитоплазматических мембранах клетки;
4. Сложно организованные вирусы в процессе формирования включают в свой состав компоненты клетки-хозяина (липиды, углеводы).
Выход вирусов из клетки. Различают два основных типа выхода вирусного потомства из клетки. Первый тип — взрывной — характеризуется одновременным выходом большого количества вирусов. При этом клетка быстро погибает. Такой способ выхода характерен для вирусов, не имеющих суперкапсидной оболочки. Второй тип — почкование. Он присущ вирусам, имеющим суперкапсидную оболочку. На заключительном этапе сборки нуклеокапсиды сложно устроенных вирусов фиксируются на клеточной плазматической мембране, модифицированной вирусными белками, и постепенно выпячивают ее. В результате выпячивания образуется «почка», содержащая нуклеокапсид. Затем «почка» отделяется от клетки. Таким образом, внешняя оболочка этих вирусов формируется в процессе их выхода из клетки. При таком механизме клетка может продолжительное время продуцировать вирус, сохраняя в той или иной мере свои основные функции.
Время, необходимое для осуществления полного цикла репродукции вирусов, варьирует от 5—6 ч (вирусы гриппа, натуральной оспы и др.) до нескольких суток (вирусы кори, аденовирусы и др.). Образовавшиеся вирусы способны инфицировать новые клетки и проходить в них указанный выше цикл репродукции.
31 интегративный тип взаимодействия вируса с клеткой.
Интегративный тип, или вирогения — характеризуется встраиванием (интеграцией) вирусной ДНК в виде провируса в хромосому клетки и их совместным сосуществованием (совместная репликация).
32 бактериофаги. Взаимодействие фага с бактериальной клеткой. Умеренные и вирулентные бактериофаги.
Бактериофаги — вирусы бактерий, обладающие способностью специфически проникать в бактериальные клетки, репродуцироваться в них и вызывать их растворение (лизис).
Взаимодействие фага с бактериальной клеткой. По механизму взаимодействия различают вирулентные и умеренные фаги.
Вирулентные фаги, проникнув в бактериальную клетку, автономно репродуцируются в ней и вызывают лизис бактерий. Процесс взаимодействия вирулентного фага с бактерией протекает в виде нескольких стадий и весьма схож с процессом взаимодействия вирусов человека и животных с клеткой хозяина. Однако для фагов, имеющих хвостовой отросток с сокращающимся чехлом, он имеет особенности. Эти фаги адсорбируются на поверхности бактериальной клетки с помощью фибрилл хвостового отростка. В результате активации фагового фермента АТФазы происходит сокращение чехла хвостового отростка и внедрение стержня в клетку. В процессе «прокалывания» клеточной стенки бактерии принимает участие фермент лизоцим, находящийся на конце хвостового отростка. Вслед за этим ДНК фага, содержащаяся в головке, проходит через полость хвостового стержня и активно впрыскивается в цитоплазму клетки. Остальные структурные элементы фага (капсид и отросток) остаются вне клетки.
После биосинтеза фаговых компонентов и их самосборки в бактериальной клетке накапливается до 200 новых фаговых частиц. Под действием фагового лизоцима и внутриклеточного осмотического давления происходит разрушение клеточной стенки, выход фагового потомства в окружающую среду и лизис бактерии. Один литический цикл (от момента адсорбции фагов до их выхода из клетки) продолжается 30—40 мин. Процесс бактериофагии проходит несколько циклов, пока не будут лизированы все чувствительные к данному фагу бактерии.
Взаимодействие фагов с бактериальной клеткой характеризуется определенной степенью специфичности. По специфичности действия различают поливалентные фаги, способные взаимодействовать с родственными видами бактерий, моновалентные фаги, взаимодействующие с бактериями определенного вида, и типовые фаги, взаимодействующие с отдельными вариантами (типами) данного вида бактерий.
Умеренные фаги лизируют не все клетки в популяции, с частью из них они вступают в симбиоз, в результате чего ДНК фага встраивается в хромосому бактерии. В таком случае геномом фага называют профаг. Профаг, ставший частью хромосомы клетки, при ее размножении реплицируется синхронно с геном бактерии, не вызывая ее лизиса, и передается по наследству от клетки к клетке неограниченному числу потомков.
33 феномен лизогении. Фаговая конверсия.
Биологическое явление симбиоза микробной клетки с умеренным фагом (профагом) называется лизогенией, а культура бактерий, содержащая профаг, получила название лизогенной. Это название отражает способность профага самопроизвольно или под действием ряда физических и химических факторов исключаться из хромосомы клетки и переходить в цитоплазму, т. е. вести себя как вирулентный фаг, лизирующий бактерии.
Лизогенные культуры по своим основным свойствам не отличаются от исходных, но они невосприимчивы к повторному заражению гомологичным или близкородственным фагом и, кроме того, приобретают дополнительные свойства, которые находятся под контролем генов профага. Изменение свойств микроорганизмов под влиянием профага получило название фаговой конверсии. Последняя имеет место у многих видов микроорганизмов и касается различных их свойств: культуральных, биохимических, токсигенных, антигенных, чувствительности к антибиотикам и др. Кроме того, переходя из интегрированного состояния в вирулентную форму, умеренный фаг может захватить часть хромосомы клетки и при лизисе последней переносит эту часть хромосомы в другую клетку. Если микробная клетка станет лизогенной, она приобретает новые свойства. Таким образом, умеренные фаги являются мощным фактором изменчивости микроорганизмов.
34 применение бактериофагов и микробиологии и медицине.
Практическое применение фагов. Бактериофаги используют в лабораторной диагностике инфекций при внутривидовой идентификации бактерий, т. е. определении фаговара (фаготипа). Для этого применяют метод фаготипирования, основанный на строгой специфичности действия фагов: на чашку с плотной питательной средой, засеянной «газоном» чистой культурой возбудителя, наносят капли различных диагностических типоспецифических фагов. Фаговар бактерии определяется тем типом фага, который вызвал ее лизис (образование стерильного пятна, «бляшки», или «негативной колонии», фага). Методику фаготипирования используют для выявления источника и путей распространения инфекции (эпидемиологическое маркирование). Выделение бактерий одного фаговара от разных больных указывает на общий источник их заражения.
По содержанию бактериофагов в объектах окружающей среды (например, в воде) можно судить о присутствии в них соответствующих патогенных бактерий. Подобные исследования проводят при эпидемиологическом анализе вспышек инфекционных болезней.
Фаги применяют также для лечения и профилактики ряда бактериальных инфекций. Производят брюшнотифозный, сальмонеллезный, дизентерийный, синегнойный, стафилококковый, стрептококковый фаги и комбинированные препараты (колипротейный, пиобактериофаги и др). Бактериофаги назначают по показаниям перорально, парентерально или местно в виде жидких, таблетированных форм, свечей или аэрозолей.
Бактериофаги широко применяют в генной инженерии и биотехнологии в качестве векторов для получения рекомбинантных ДНК.