Определители. Основные определения. Вычисление определителей третьего порядка.
Определитель - число, характеризующее матрицу. Определителем матрицы 1-го порядка А=(а11) является единственный элемент этой матрицы. Определителем 2-го порядка называется число, характеризующее матрицу 2-го порядка, которое находится по следующему правилу: из произведений элементов главной диагонали вычитается произведение элементов второй диагонали матрицы А. Определителем матрицы 3-го порядка называется число, вычисляемое по правилу Сарруса. Правило Сарруса: определитель 3-го порядка (Ñ3) равен алгебраической сумме 6-ти тройных произведений элементов, стоящих в разных строках и разных столбцах; со знаком «+» берутся произведения, сомножители которых находятся на главной диагонали и в вершинах треугольников, чьи основания параллельны главной диагонали, остальные слагаемые берутся со знаком «-».
Свойства определителей.
1) Если к.-л. строка или столбец в матрице состоит из одних нолей, то Ñ этой матрицы равен 0. 2)При транспонировании матрицы её определитель не изменяется: çА ç=÷ А’÷. 3) Если все элементы к.-л. строки или столбца матрицы умножить на одно и то же число, то и Ñ этой матрицы умножится на это же число. 4) При перестановке местами 2-х строк или столбцов матрицы её определитель меняет свой знак на противоположный. 5) Если квадратная матрица содержит 2 одинаковых строки или столбца, то её определитель равен 0. 6)Если 2 строки или 2 столбца матрицы пропорциональны, то её Ñ равен 0. 7) Сумма произведений элементов к.-л. строки или столбца матрицы и другой строки или столбца равна 0. 8) Определитель матрицы не изменяется если к элементам одной строки или столбца прибавить элементы другой строки или столбца, умноженный на одно и то же число. 9)Если к.-л. столбец или строка матрицы представляет собой сумму 2-х элементов, то Ñ этой матрицы может быть представлен в виде суммы 2-х определителей.
Минор.
Минором М ij квадратной матрицы n-го порядка для элемента аij называется определитель (n-1)-ого порядка, полученный с данного вычёркиванием i-ой строки и j-ого столбца.
Алгебраическое дополнение.
Алгебраическим дополнением А ij для элемента квадратной матрицы аij называется минор этого элемента, взятый со знаком (-1) i+j.
Вычисление определителей любого порядка. Понятие определителя n-ого порядка.
Определителем квадратной матрицы n-ого порядка называется число, равное алгебраической сумме n членов, каждый из которых является произведением n-элементов матрицы, взятых по одному из каждой строки или столбца (причём знак каждого члена определяется как (-1) r(j), где r(j)-число инверсий). Теорема Лапласа: определитель квадратной матрицы равен сумме произведений элементов к.-л. строки или столбца на их алгебраические дополнения.
Матрицы. Основные определения.
Матрицей размера m x n называется прямоугольная таблица чисел, содержащая m строк и n столбцов. Вектор-строкой называют матрицу, состоящую из одной строки. Вектор-столбцом - из одного столбца. Матрица, у которой количество столбцов равно количеству строк, называется квадратной матрицей n-ого порядка. Элементы матрицы, у которых номер строки и номер столбца совпадает, называются диагональными и образуют главную диагональ матрицы. Если все недиагональные элементы матрицы равны нулю, то матрицу называют диагональной. Если у диагональной матрицы n-ого порядка на главной диагонали все элементы равны 1, то матрица называется единичной и обозначается Е. Матрица любого размера, все элементы которой равны 0, называется нуль-матрицей.
Операции над матрицами.
1) Умножение матрицы на число: условий нет, умножить на число можно любую матрицу. Произведением матрицы А на число l называется матрица В, равная lА, каждый элемент которой находится по формуле: b ij =l x a ij. Для того, чтобы умножить матрицу на число необходимо умножить на это число каждый элемент матрицы. 2) Сложение 2-х матриц: условие - складывать можно только матрицы одинакового размера. Суммой 2-х матриц А и В называется матрица С=А+В, каждый элемент которой находится по формуле Сij = aij + bij. Для того, чтобы сложить 2 матрицы, необходимо складывать между собой элементы, стоящие на одинаковых местах. 3) Вычитание 2-х матриц: операция аналогична сложению. 4) Умножение 2-х матриц: умножение А на В возможно тогда и только тогда, когда число столбцов А равно числу строк В; произведением матрицы А размера m x k на матрицу В размера k x n называется матрица С размера m x n, каждый элемент которой равен сумме произведений элементов i-ой строки матрицы А на соответствующие элементы j-ого столбца матрицы В. 5) Возведение в степень: возводить в степень можно только квадратные матрицы; целой положительной степенью квадратной матрицы А m называется произведение m-матриц, равных А. 6) Транспонирование: условий нет; транспонирование -операция, в результате которой строчки и столбцы матрицы меняются местами с сохранением порядка элемента, при этом элементы главной диагонали остаются на своих местах.
8. Понятие обратной матрицы и алгоритм её вычисления.
Матрица А-1 называется обратной по отношению к квадратной матрице А, если при умножении её на заданную как справа так и слева получатся единичная матрица. Теорема (необходимое и достаточн.условие сущ-я обратн.матрицы): обратная матрица А-1 сущ-т и единственна тогда и только тогда, когда заданная матрица не вырожденная. Матрица называется вырожденной, если её определитель равен 0, в противном случае она – не вырожденная. Алгоритм: 1)Определитель заданной матрицы. 2)Транспонирование. 3)Алгебраические дополнения всех элементов транспонированной матрицы. 4) Присоед.матрица А@ (на месте каждого эл-та А т его алгебраич.доп-я). 5) А -1 = 1/DА *A@. 6) Проверка=>А -1 *А=Е.
Ранг матрицы. Элементарные преобразования.
Рангом матрицы А называется наивысший порядок отличных от 0 миноров этой матрицы [rang A=r(A)]. Ранг матрицы не изменяется при проведении элементарных преобразований. Преобразования: 1)отбрасывание строки или столбца, состоящих из одних нулей; 2)умножение всех эл-ов к.-л. строки или столбца матрицы на одно и то же число, отличное от 0; 3)изменение порядка строк или столбцов матрицы; 4)прибавление к каждому эл-ту к.-л. строки или столбца эл-ов др. строки или столбца, умноженных на одно и то же число, не равное 0; 5) транспонирование матрицы.