Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Формули сферичної геометрії. Паралактичний трикутник. Перетворення небесних координат.

Системи координат

Робота

Студента групи ФІ-09

Бушуєв Станіслав Андрійович

Кривий Ріг 2013

Формули сферичної геометрії. Паралактичний трикутник. Перетворення небесних координат.

Сферична геометрія — розділ геометрії, який вивчає геометричні фігури на поверхні сфери. Це приклад неевклідової геометрії. Сферична геометрія виникла в давнину в зв'язку з потребами географії та астрономії.

При перетині двох великих кіл утворюються чотири сферичні двокутники. Площа двокутника визначається формулою , де — радіус сфери, а — кут двокутника.

Сторони сферичного трикутника вимірюють величиною кута, утвореного радіусами сфери, проведеними до кінців цієї сторони. Кожна сторона сферичного трикутника менша суми і більша різниці двох інших. Сума всіх сторін сферичного трикутника завжди менша . Сума кутів сферичного трикутника завжди більша і менша . Величина називається сферичним надлишком. Площа сферичного трикутника визначається за формулою Жирара .

Сфери́чні гармо́ніки — набір ортонормованих функцій двох кутових змінних і , які складають повний базис функцій сферичного кута.

Сферичні гармоніки позначаються , де l = 0,1,2…, а m пробігає значення від -l до l.

,

де - приєднані поліноми Лежандра.

Сферичні гармоніки є власними функціями оператора кутового моменту.

Множник в означенні сферичних гармонік вибирається з умови нормування

,

де інтегрування проводиться по повному сферичному куту, а - символ Кронекера.

 

Паралактичний трикутник

 

Сферичні трикутники, розміщені на небесній сфері, називаються астрономічними.   Перший астрономічний або паралактичний трикутник Трикутник, розміщений на небесній сфері і містить у вершинах зеніт Z, полюс світу P і будь-яке світило М, а сторони якого зображаються дугами небесного меридіана, кола висоти світила і кола схилення світила називають паралактичним або першим астрономічним трикутником.   Сторони цього трикутника: PZ=90о–φ (φ – широта місця спостереження), ZM=z=90о–h (z – зенітна віддаль світила), PM=90о–δ (δ – схилення світила).   Кути цього трикутника: PZM=180о–А (А – азимут світила), ZPM=t (t – годинний кут світила), PMZ – з астрономічними координатами не зв’язаний і не має спеціального позначення.   Другий астрономічний трикутник Трикутник, розміщений на небесній сфері і містить у вершинах полюс світу P, полюс екліптики П і будь-яке світило М, а сторони якого зображаються дугами кола схилення, кола широти світила і кола широти, що проходить через полюс світу, називається другим астрономічним трикутником.   Сторони трикутника: PM=90о–δ, ПМ=90о–β (β – широта світила), ПР=ε (ε – кут нахилу екліптики до екватора).   Кутитрикутника: РПМ=90о–λ (λ – довгота світила), ПРМ=90о+α (α – пряме сходження світила), ПМР – з астрономічними координатами не зв’язаний.

 

Перетворення небесних координат

 

Перехід від горизонтальних координат до перших екваторіальних Нехай в заданому місці, широта φ якого відома із спостережень, визначені горизонтальні координати світила М: зенітна віддаль z і азимут А. Визначити координати світила М в першій екваторіальній системі координат. Побудуємо для цього паралактичний трикутник. До сторони РМ застосуємо теорему косинусів: , або (1). У (1) φ, z, А - задані, а тому можна визначити схилення світила δ. До сторін ZМ і РМ застосуємо теорему синусів: знаходимо sin t: (2).   У (2) А, z задані, а δ визначається з (1), тому визначаємо годинний кут t.   Обернена задача: нехай задані координати δ і t світила М і відома широта φ місця спостереження. Визначити горизонтальні координати z і А. За теоремою косинусів до сторони ZM: (3). У (3) φ, δ, t задано, а тому визначаємо зенітну віддаль світила. Застосуємо теорему синусів до сторін МZ і РМ: (4). Так як δ і t задані, а z визначається за формулою (3), то (4) визначає азимут світила М.   Перехід від першої екваторіальної системи координат до другої Нехай задано координати t і δ світила М в першій екваторіальній системі координат. Так як координата t світила М міняється в результаті добового обертання небесної сфери, то необхідно задати час до якого відносяться ці координати. Цей час може бути задано в будь-якій системі виміру: зоряний, поясний, середній сонячний. Припустимо, що відомо зоряний час s, тоді (5). Ця формула дозволяє перейти від першої екваторіальної системи координат до другої екваторіальної системи координат, а друга координата схилення в обох системах однакова.   Перехід від другої екваторіальної системи координат до екліптичної системи координат Нехай відомо координати α і δ світила М в другій екваторіальній системі координат. Визначимо координати λ і β світила М в екліптичній системі координат. Для світила М будуємо другий астрономічний трикутник. Застосуємо теорему косинусів до сторони ПМ: (6). δ, α, ε – відомі, тому формула (6) визначає широту β світила М.   Застосуємо теорему синусів до сторін ПМ, РМ: (7). α, δ – відомі, а β визначається з (6), тому (7) дозволяє визначити довготу λ точки М.   Обернена задача: дано екліптичні координати β, λ світила М. Визначити екваторіальні координати α, δ. Застосуємо теорему косинусів до сторони РМ: (8). Застосуємо теорему синусів до сторін РМ і ПМ: (9) ε, β, λ – відомі, тому з (8) визначаємо δ. За відомими β, λ, δ визначаємо α з формули (9).

 

 



<== предыдущая лекция | следующая лекция ==>
 | Несколько эпизодов из биографии дяди Илюши
Поделиться с друзьями:


Дата добавления: 2016-11-23; Мы поможем в написании ваших работ!; просмотров: 608 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Настоящая ответственность бывает только личной. © Фазиль Искандер
==> читать все изречения...

2992 - | 2714 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.017 с.