Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Задания 3.2 для самостоятельной проработки




Составить программу вычисления суммы ряда с заданной точностью e. Анализируя код программы, выявить возможные причины возникновения исключений и ввести их обработку, обеспечивающую вывод типа исключения и пояснение к причине его возникновения.

1. Вычислить с точностью e

- приближенное значения функции ln(1+X)/X по формуле
,
используя смешанный способ вычисления члена ряда,

- точное значение функции ln(1+X)/X,

- абсолютную и относительную ошибки приближенного значения.

2. Вычислить с точностью e

- приближенное значения функции по формуле
,
используя рекуррентную формулу для вычисления члена ряда,

- точное значение функции ,

- абсолютную и относительную ошибки приближенного значения.

3. Вычислить с точностью e

- приближенное значения функции sinX по формуле
,
используя рекуррентную формулу для вычисления члена ряда,

- точное значение функции sinX,

- абсолютную и относительную ошибки приближенного значения.

4. Вычислить с точностью e

- приближенное значения функции по формуле
,
используя рекуррентную формулу для вычисления члена ряда,

- точное значение функции ,

- абсолютную и относительную ошибки приближенного значения.

5. Вычислить с точностью e

- приближенное значения функции arcsinX по формуле
,
используя рекуррентную формулу для вычисления члена ряда,

- точное значение функции arcsinX,

- абсолютную и относительную ошибки приближенного значения.

6. Вычислить с точностью e

- приближенное значения функции arctgX по формуле
,
используя смешанный способ вычисления члена ряда,

- точное значение функции arctgX,

- абсолютную и относительную ошибки приближенного значения.

7. Вычислить с точностью e

- приближенное значения функции по формуле
,
используя рекуррентную формулу для вычисления члена ряда,

- точное значение функции ,

- абсолютную и относительную ошибки приближенного значения.

8. Вычислить с точностью e

- приближенное значения функции по формуле
,
используя рекуррентную формулу для вычисления члена ряда,

- точное значение функции ,

- абсолютную и относительную ошибки приближенного значения.

9. Вычислить с точностью e

- приближенное значения функции ln(1-X) по формуле
,
используя смешанный способ вычисления члена ряда,

- точное значение функции ln(1-X),

- абсолютную и относительную ошибки приближенного значения.

10. Вычислить с точностью e

- приближенное значения функции по формуле
,
используя смешанный способ вычисления члена ряда,

- точное значение функции ,

- абсолютную и относительную ошибки приближенного значения.

11. Вычислить с точностью e

- приближенное значения функции по формуле
,
используя смешанный способ вычисления члена ряда,

- точное значение функции ,

- абсолютную и относительную ошибки приближенного значения.

12. Вычислить с точностью e

- приближенное значения функции по формуле
,
используя смешанный способ вычисления члена ряда,

- точное значение функции ,

- абсолютную и относительную ошибки приближенного значения.

13. Вычислить с точностью e

- приближенное значения функции по формуле
,
используя рекуррентную формулу для вычисления члена ряда,

- точное значение функции ,

- абсолютную и относительную ошибки приближенного значения.

14. Вычислить с точностью e

- приближенное значения функции по формуле
,
используя смешанный способ вычисления члена ряда,

- точное значение функции ,

- абсолютную и относительную ошибки приближенного значения.

15. Вычислить с точностью e

- приближенное значения функции по формуле
,
используя рекуррентную формулу для вычисления члена ряда,

- точное значение функции ,

- абсолютную и относительную ошибки приближенного значения.

16. Вычислить с точностью e

- приближенное значения π по формуле
,
используя смешанный способ вычисления члена ряда,

- точное значение π с помощью стандартной функции Pi,

- абсолютную и относительную ошибки приближенного значения.

17. Вычислить с точностью e

- приближенное значения по формуле
,
используя рекуррентную формулу для вычисления члена ряда,

- точное значение функции,

- абсолютную и относительную ошибки приближенного значения.

18. Вычислить с точностью e сумму бесконечного ряда

,

- используя смешанный способ вычисления члена ряда,

- используя общую формулу для вычисления члена ряда.

19. Вычислить с точностью e сумму бесконечного ряда

,

- используя смешанный способ вычисления члена ряда,

- используя общую формулу для вычисления члена ряда.

20. Вычислить с точностью e сумму бесконечного ряда

,

- используя смешанный способ вычисления члена ряда,

- используя общую формулу для вычисления члена ряда.

21. Вычислить с точностью e сумму бесконечного ряда

,

- используя смешанный способ вычисления члена ряда,

- используя общую формулу для вычисления члена ряда.

22. Вычислить с точностью e сумму бесконечного ряда

,

- используя смешанный способ вычисления члена ряда,

- используя общую формулу для вычисления члена ряда.

23. Вычислить с точностью e сумму бесконечного ряда

,

- используя смешанный способ вычисления члена ряда,

- используя общую формулу для вычисления члена ряда.

24. Вычислить с точностью e сумму бесконечного ряда

,

- используя смешанный способ вычисления члена ряда,

- используя рекуррентную формулу для вычисления члена ряда.

25. Вычислить с точностью e сумму бесконечного ряда

,

- используя смешанный способ вычисления члена ряда,

- используя рекуррентную формулу для вычисления члена ряда.

26. Вычислить с точностью e сумму бесконечного ряда ,

используя смешанный способ вычисления члена ряда.

27. Вычислить с точностью e сумму бесконечного ряда
,

- используя рекуррентную формулу для вычисления члена ряда,

- используя смешанный способ вычисления члена ряда.

 





Поделиться с друзьями:


Дата добавления: 2016-11-20; Мы поможем в написании ваших работ!; просмотров: 426 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Слабые люди всю жизнь стараются быть не хуже других. Сильным во что бы то ни стало нужно стать лучше всех. © Борис Акунин
==> читать все изречения...

2257 - | 2182 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.