Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Структурированные данные и алгоритмы их обработки




ТЕХНОЛОГИИ ПРОГРАММИРОВАНИЯ

 

Простые типы данных: переменные и константы

Реальные данные, которые обрабатывает программа, – это це­лые и вещественные числа, символы и логические величины. Эти простые типы данных называют базовыми. Все данные, обрабатыва­емые компьютером, хранятся в ячейках памяти компьютера, каждая из которых имеет свой адрес. Для того чтобы не следить за тем, по какому адресу будут записаны те или иные данные, в языках про­граммирования используется понятие переменной, позволяющее от­влечься от адреса ячейки памяти и обращаться к ней с помощью имени (идентификатора).

Переменная – именованный объект (ячейка памяти), кото­рый может изменять свое значение. Имя переменной указывает на значение, а способ ее хранения и адрес остаются скрытыми от про­граммиста. Кроме имени и значения, переменная имеет тип, опре­деляющий, какая информация находится в памяти. Тип переменной задает:

• используемый способ записи информации в ячейки памяти;

• необходимый объем памяти для ее хранения.

Объем памяти для каждого типа определяется таким образом, чтобы в него можно было поместить любое значение из допустимо­го диапазона значений данного типа. Например, тип «байт» может принимать значения от 0 до 255, что в двоичном коде (25510 =111111112) соответствует ячейке памяти длиной в 8 бит (или 1 байт).

В алгоритмах все данные хранятся в виде переменных. Например, инструкция «Ввод двух чи­сел а, b» означает введение пользователем значений двух перемен­ных, а инструкция «К = К +1» означает увеличение значения перемен­ной К на единицу.

Если переменные присутствуют в программе, на протяжении всего времени ее работы – их называют статическими. Переменные, создающиеся и уничтожающиеся на разных этапах выполнения про­граммы, называют динамическими.

Все остальные данные в программе, значения которых не изме­няются на протяжении ее работы, называют константами или посто­янными. Константы, как и переменные, имеют тип. Их можно ука­зывать явно, например, в инструкции «К = К +1», 1 есть константа, или для удобства обозначать идентификаторами: pi = 3,1415926536. Только значение pi нельзя изменить, так как это константа, а не пе­ременная.

 

Структурированные данные и алгоритмы их обработки

Для повышения производительности и качества работы необхо­димо иметь данные, максимально приближенные к реальным анало­гам. Тип данных, позволяющий хранить вместе под одним именем несколько переменных, называется структурированным. Каждый язык программирования имеет свои структурированные типы. Рас­смотрим структуру, объединяющую элементы одного типа данных – массив.

Массивом называется упорядоченная совокупность однотипных величин, имеющих общее имя, элементы которой адресуются (раз­личаются) порядковыми номерами (индексами). В качестве иллюст­рации можно представить шкаф, содержащий множество пронуме­рованных ящиков (совокупность – «Ящик № 1», «Ящик № 2», «Ящик № 3» и т.д.; «Ящик» – общее имя всех ее элементов). Доступ к со­держимому конкретного ящика (элементу массива) осуществляется после выбора ящика по его номеру (индексу). Элементы массива в памяти компьютера хранятся по соседству, одиночные элементы про­стого типа такого расположения данных в памяти не предполагают. Массивы различаются количеством индексов, определяющих их эле­менты.

Одномерный массив (шкаф ящиков в один ряд) предполагает на­личие у каждого элемента только одного индекса. Примерами одно­мерных массивов служат арифметическая i) и геометрическая (bi) последовательности, определяющие конечные ряды чисел. Количе­ство элементов массива называют размерностью. При определении одномерного массива его размерность записывается в круглых скоб­ках, рядом с его именем. Например, если сказано: «задан массив А(10)», это означает, что даны элементы: a1, a2,..., а10. Рассмотрим алгоритмы обработки элементов одномерных массивов.

Ввод элементов одномерного массива осуществляется поэлемен­тно, в порядке, необходимом для решения конкретной задачи. Обыч­но, когда требуется ввести весь массив, порядок ввода элементов не важен, и элементы вводятся в порядке возрастания их индексов.

Рассмотрим двумерныймассив (шкаф с множеством ящиков, положение которых определяется двумя коорди­натами – по горизонтали и по вертикали). В математике двумерный массив (таблица чисел) называется матрицей. Каждый ее элемент имеет два индекса а ij, первый индекс i определяет номер строки, в которой на­ходится элемент (координата по горизонтали), а второй, j – номер столбца (координата по вертикали). Двумерный массив характеризу­ется двумя размерностями N и М, определяющими число строк и столбцов соответственно.

Ввод элементов двумерного массива осуществляется построчно, в свою очередь, ввод каждой строки производится поэлементно, тем самым определяется циклическая конструкция, реализующая вложение циклов. Внешний цикл определяет номер вводимой строки (i), внутренний – номер элемента по столбцу (j). На рис. Представлен алгоритм ввода матрицы A(N на М).

 
 

 

Языки программирования

Компьютерная программа представляет собой логически упорядоченную последовательность команд, предназначен­ных для управления компьютером. Процессор компьютера – это большая интегральная схема. Все данные и команды он получает в виде электрических сигналов. В двоичном коде наличие сигнала опи­сывается понятием «1», а его отсутствие – понятием «0». Команды, обрабатываемые процессором, можно интерпретировать как ряд че­редующихся определенным образом единиц и нулей. То есть любая команда преобразуется в двоичное число. Таким образом, процессор исполняет программы, представляющие собой последовательность чисел и называемые машинным кодом.

Писать программы в машинных кодах очень сложно, причем с ростом размера программы эта задача усложняется. В компьютерах первого поколения использовались программы, написанные в ма­шинных кодах, причем для каждого компьютера существовал свой собственный машинный код. Числовая кодировка команд, адресов ячеек и обрабатываемых данных, зависимость вида программы от ее места в памяти не давали возможность следить за смыслом програм­мы. Это во многом ограничивало область применения компьютеров первого поколения. В тот период (начало 50-х гг.) средства програм­мирования и программное обеспечение только зарождались и были еще не развиты. Для того чтобы сделать программу читабельной и иметь возможность следить за ее смысловой структурой, придумали символический язык ассемблер, близкий к машинному (конец 50-х – начало 60-х гг.), в котором появилось понятие переменной. Ассемб­лер стал первым полноценным языком программирования. Благода­ря этому заметно уменьшилось время разработки и возросла надеж­ность программ. Для записи кодов операций и обрабатываемой информации в ассемблере используются стандартные обозначения, позволяющие записывать числа и текст в общепринятом виде, для кодов команд приняты мнемонические обозначения. Для обозначе­ния величин, размещаемых в памяти, можно применять имена. После ввода программы ассемблер сам заменяет символические имена на адреса памяти, а символические коды команд на числовые. Исполь­зование ассемблера сделало процесс программирование более нагляд­ным. Дальнейшее развитие этой идеи привело к созданию языков программирования высокого уровня, в которых длинные и сложные последовательности машинных кодов были заменены одним един­ственным обозначающим их словом – операторы.

Сегодня практически все программы создаются с помощью язы­ков программирования. Теоретически программу можно написать и на естественном языке (говорят: программирование на метаязыке), но из-за неоднозначности естественного языка автоматически пере­вести такую программу в машинный код пока невозможно.

Языки программирования – это формальные искусственные язы­ки. Как и естественные языки, они имеют алфавит, словарный запас, грамматику и синтаксис, а также семантику.

Алфавит – разрешенный к использованию набор символов, с помощью которого могут быть образованы слова и величины данного языка.

Синтаксис – система правил, определяющих допустимые конст­рукции языка программирования из букв алфавита.

Семантика – система правил однозначного толкования каждой языковой конструкции, позволяющих производить процесс обработ­ки данных.

Взаимодействие синтаксических и семантических правил опре­деляет основные понятия языка, такие как операторы, идентифика­торы, константы, переменные, функции, процедуры и т.д. В отличие от естественных, язык программирования имеет ограниченный запас слов (операторов) и строгие правила их написания, а правила грам­матики и семантики, как и для любого формального языка, явно однозначно и четко сформулированы.

Языки программирования, ориентированные на команды про­цессора и учитывающие его особенности, называют языками низко­го уровня. «Низкий уровень» не означает неразвитый, имеется в виду, что операторы этого языка близки к машинному коду и ориентиро­ваны на конкретные команды процессора.

Языком самого низкого уровня является ассемблер. Программа, написанная на нем, представляет последовательность команд машин­ных кодов, но записанных с помощью символьных мнемоник. С по­мощью языков низкого уровня создаются компактные программы, так как программист получает доступ ко всем возмож­ностям процессора. С другой стороны, при этом требуется хорошо понимать устройство компьютера, а использование такой програм­мы на компьютере с процессором другого типа невозможно. Такие языки программирования используются для написания небольших системных приложений, драйверов устройств, модулей стыковки с нестандартным оборудованием, когда важнее компактность и быстро­действие.

Языки программирования, имитирующие естественные, облада­ющие укрупненными командами, ориентированные «на человека», называют языками высокого уровня. Чем выше уровень языка, тем ближе структуры данных и конструкции, использующиеся в програм­ме, к понятиям исходной задачи. Особенности конкретных компь­ютерных архитектур в них не учитываются, поэтому исходные тек­сты программ легко переносимы на другие платформы, имеющие трансляторы этого языка. Разрабатывать программы на языках вы­сокого уровня с помощью понятных и мощных команд значительно проще, число ошибок, допускаемых в процессе программирования, намного меньше. В настоящее время насчитывается несколько сотен таких языков (без учета их диалектов).

Таким образом, языки программирования высокого уровня, ори­ентированные на решение больших содержательных прикладных за­дач, являются аппаратно-независимыми и требуют использования соответствующих программ-переводчиков для преобразования текста программы в машинный код, который в итоге и обрабатывается про­цессором,

 





Поделиться с друзьями:


Дата добавления: 2016-11-20; Мы поможем в написании ваших работ!; просмотров: 1317 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Студенческая общага - это место, где меня научили готовить 20 блюд из макарон и 40 из доширака. А майонез - это вообще десерт. © Неизвестно
==> читать все изречения...

2372 - | 2321 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.