Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Часть четвертая. Логика во всем своем блеске и великолепии




 

XIII. Логика и жизнь

 

А. Что такое логика

 

198. Определение логики по Траляля.

Мне нравится следующее определение логики, принадлежащее Траляля:

Труляля (обращаясь к Алисе). Я знаю, о чем ты думаешь, но это не так! Ни в коем разе!

Траляля Наоборот, если было так, то так могло быть, а если бы так было, то так и было бы. Но ничего такого нет. Это и есть логика.

199. Определение логики по Терберу.

В романе «Тринадцать часов» Тербер приводит определение логики, суть которого сводится примерно к следующему. Поскольку можно прикоснуться к часам, не останавливая их, то можно пустить часы, не прикасаясь к ним. Это — логика, какой я ее вижу и понимаю.

200.

Определение логики по Терберу несколько напоминает мой излюбленный силлогизм: некоторые автомашины дребезжат на ходу. Моя автомашина — это некоторая автомашина. Не удивительно, что моя автомашина дребезжит!

201. Еще одно определение логики.

Мой приятель, отставной полицейский офицер, узнав, что я логик, сказал мне однажды: «Знаешь, что я понимаю под логикой? Однажды мы с женой были в гостях. Хозяйка предложила нам отведать пирога. На подносе лежало всего два куска пирога, один побольше, другой поменьше. Немного подумав, я решил взять себе тот, что побольше. Рассуждал я при этом так. Я знаю, что моя жена любит пироги и что она знает, что я люблю пироги. Я также знаю, что она любит меня и хочет, чтобы я был счастлив. Следовательно, ей хочется, чтобы я взял себе тот кусок пирога, который побольше. Так я и сделал».

202.

Рассказ моего приятеля напомнил мне историю о двух посетителях ресторана, заказавших рыбу. Официант принес блюдо с двумя рыбами: одной побольше, другой поменьше. Один из посетителей сказал другому: «Прошу вас. Выбирайте любую, какая вам больше правится». Сотрапезник поблагодарил за любезность и положил себе на тарелку ту рыбу, которая была побольше. После напряженного молчания первый посетитель заметил: «Если бы вы предоставили мне право первого выбора, то я взял бы себе ту рыбу, которая поменьше!» «На что вы, собственно, жалуетесь? — осведомился у него другой посетитель. — Ведь вы получили именно то, что хотели!»

203.

История о двух посетителях ресторана напомнила мне еще одну историю о даме на званом обеде. Когда подали спаржу, эта дама, взяв себе с серебряного блюда все головки, передала остальное соседу. Сосед спросил: «Что вы делаете? Почему вы взяли себе все головки, а остальное отдали мне?» «Как, разве вы не знаете? — невозмутимо ответила дама. — Головки в спарже — самое вкусное».

204.

Однажды в какой-то газете мне попалась на глаза карикатура. Мальчик и девочка идут по тротуару. Мальчик идет дальше от проезжей части, чем девочка. Мимо них проезжает грузовик и обдает девочку грязью с головы до ног. Мальчик говорит своей спутнице: «Теперь ты понимаешь, почему я не хожу со стороны проезжей части как джентльмен?»

205.

Мне нравится следующее определение этики. Мальчик спрашивает отца: «Папа, что такое этика?» Отец отвечает: «Сейчас объясню тебе на примере, сынок. Как-то раз в мой магазин зашла одна дама. Оплачивая покупку, она дала мне двадцатидолларовую купюру, думая, что дает мне десять долларов. Я также подумал, что она уплатила десять долларов, и дал ей сдачу как с десяти долларов. Лишь через несколько часов я обнаружил, что дама в действительности уплатила двадцать долларов. Сообщу ли я или не сообщу об этом моему партнеру? Это и есть этика, мой мальчик».

206.

Однажды я вместе с приятелем, математиком по профессии, зашел в небольшой ресторанчик пообедать. После перечня блюд в меню стояло: «За все особо заказанное нужно особо платить». Мой приятель заметил по этому поводу: «Слово 'особо', да еще дважды повторенное, здесь явно ни к чему».

207.

На рекламе одного ресторана красовалась броская надпись:

Все вкусное не дешево.

Все дешевое не вкусно.

Означают ли эти два предложения одно и то же, или их содержание различно?

С точки зрения логики оба предложения означают одно и то же. Они эквивалентны утверждению «нет ничего, что было бы вкусно и дешево». И все же, хотя эти предложения логически эквивалентны, их психологический подтекст различен. При чтении первого предложения в моем воображении возникает мысль о вкусном блюде, за которое стоит заплатить дорого. При чтении второго рождается мысль о недоброкачественно дешевом блюде. Не думаю, чтобы моя реакция была нетипичной.

 

Б. Кто вы: физик или математик?

 

208.

Должно быть, многим известна задача о двух сосудах, в одном из которых содержится 10 мл воды, а в другом — 10 мл вина. Из сосуда с водой в сосуд с вином отливают 3 мл воды и после тщательного перемешивания 3 мл смеси переливают обратно в сосуд с водой. Спрашивается, чего больше: воды в сосуде с вином или вина в сосуде с водой?

Решать эту задачу можно двумя способами: «арифметически» (подсчитать количество воды, внесенной при переливаниях в сосуд с вином, и вина, оказавшегося в сосуде с водой) и «физическим», основанным на здравом смысле. Я отдаю предпочтение физическому решению. При арифметическом подходе задача решается следующим образом. После того как в сосуд с вином влили 3 мл воды, в нем оказалось 13 мл смеси: 3/13 составляет вода и 10/13 вино. После переливания в сосуд с водой 3 мл смеси в нем оказалось 3×10/13 = 30/13 мл вина. До второго переливания в сосуде с вином находилось 3 мл воды, из них 3×3/13 мл было перелито в сосуд с водой. Следовательно, после двух переливаний в сосуде с вином осталось 3–9/13 мл воды. Но 3–9/13 = 39/13 — 9/13 = 30/13. Таким образом, воды в сосуде с вином оказалось ровно столько же (а именно 30/13 мл), сколько вина в сосуде с водой.

Физическое решение приводит к ответу несравненно быстрее и, кроме того, подсказывает некую общую идею: поскольку количество жидкости в каждом сосуде после двух переливаний одинаково, то убыль воды в сосуде с водой восполнена вином, а убыль вина в сосуде с вином восполнена водой. Тем самым задача решена. Разумеется, здравый смысл не позволяет нам оценить величину убыли жидкости в каждом сосуде, в то время как арифметическое решение позволяет указать ее точный объем: 30/13 мл. Зато физическое решение применимо к следующей более общей задаче (перед которой арифметический подход оказывается бессильным).

Возьмем те же два сосуда с водой и с вином, что и в предыдущей задаче, и начнем переливать жидкость из одного сосуда в другой, не измеряя каждый раз, какой объем мы переливаем, и не подсчитывая, сколько раз мы производим переливание. Количество переливаемой жидкости может изменяться от одного переливания к другому, лишь бы по окончании всех операций в каждом сосуде снова оказалось по 10 мл жидкости. Спрашивается, чего больше: воды в сосуде с вином или вина в сосуде с водой?

Те же соображения, которые привели нас к физическому решению, позволяют утверждать, что посла всех переливаний воды в сосуде с вином окажется столько же, сколько вина в сосуде с водой, но их недостаточно, чтобы узнать, сколько именно жидкости перешло из одного сосуда в другой.

209.

В связи с предыдущей задачей у меня возник следующий вопрос. Представим себе, что первоначально в сосуд A налито 10 мл воды, а в сосуд B — 10 мл вина, и мы переливаем жидкость из одного сосуда в другой и обратно по 3 мл любое конечное число раз. Сколько переливаний требуется произвести, чтобы процентное содержание вина в обоих сосудах стало одинаковым?

Я имел в виду следующий ответ: за любое конечное число переливаний невозможно добиться равенства концентраций вина в обоих сосудах. Независимо от того, сколько вина в одном сосуде, сколько воды в другом и сколько жидкости переливается каждый раз из сосуда в сосуд и обратно (если только один сосуд при переливании не опоражнивается полностью), концентрация вина в сосуде B всегда останется выше, чем в сосуде A. Убедиться в этом можно при помощи простого рассуждения, использующего математическую индукцию. Первоначально концентрация вина в сосуде B, несомненно, выше, чем в сосуде A. Предположим, что после какого-то числа переливаний концентрация вина в сосуде B остается по-прежнему выше, чем в сосуде A. Переливая затем какое-то количество жидкости из сосуда B в сосуд A, мы будем переливать более крепкий раствор в более слабый. Следовательно, и после очередного переливания концентрация вина в сосуде B останется выше, чем в сосуде A. Если мы перельем какое-то количество жидкости из сосуда A в сосуд B, то концентрация вина в B также останется выше, чем в A. Так как любое переливание сводится к одному из этих двух случаев, то мы заключаем, что концентрация вина в сосуде B всегда больше, чем в сосуде A. Единственный способ выравнять концентрации — перелить целиком содержимое одного сосуда в другой.

Если эту задачу рассматривать как чисто математическую, то мои рассуждения безупречны. Но если рассматривать ее как физическую задачу, то в моем рассуждении обнаруживаются уязвимые места. Оно исходит из представления о безграничной делимости жидкости, в то время как реальные жидкости состоят из дискретных молекул. На это обстоятельство один из читателей обратил внимание Мартина Гарднера[6]. Он подсчитал, что после 47 переливаний «туда и обратно» концентрация вина в обоих сосудах с высокой вероятностью окажется равной.

Интересно, останется ли в силе предложенное этим читателем решение, если число молекул в сосуде вина будет нечетным? Проживи я на свете миллион лет, мне никогда не пришло бы в голову, что эта задача не математическая, а физическая.

210. Какой брусок намагничен?

Мартин Гарднер предложил следующую задачу[7]. Представьте себе, что вы заперты в комнате, где (так же как и на вас самих) нет ничего металлического, кроме двух совершенно одинаковых с виду железных брусков. Один из брусков намагничен. Установить, какой именно, можно, подвесив каждый из брусков на нити, обвязанной вокруг середины бруска: намагниченный брусок будет вести себя как стрелка компаса, то есть указывать на север. Нельзя ли установить, какой из брусков намагничен, более простым способом?

Приведенное в книге Гарднера решение состояло в том, чтобы дотронуться концом одного бруска до середины другого. Если вы почувствуете притяжение, то брусок, которым вы дотрагивались, намагничен. Если притяжения не возникает, то в руках у вас находится ненамагниченный брусок.

Это «физическое» решение вполне разумно. Осуществить его «экспериментально» проще, чем подвешивать оба бруска на нитях. Будучи все-таки логиком, а не физиком, я придумал еще одно решение, занимающее по своей простоте промежуточное положение между «физическим» и «лобовым». Я предлагаю взять один брусок, обвязать его нитью посредине и, подвесив на нити, посмотреть, будет ли он указывать на север.

211. Кто вы: физик или математик?

Как вы мыслите: физически или математически? Следующий великолепный тест позволит безошибочно определить, физик вы или математик.

Вы находитесь в летней кухне. В вашем распоряжении нерастопленная плита, коробок спичек, кран с холодной водой и пустая кастрюля. Требуется нагреть кастрюлю воды. Что бы вы стали делать? Должно быть, на этот вопрос вы ответили бы так: «Я налил бы в кастрюлю холодной воды из крана, зажег плиту, поставил кастрюлю на огонь и подождал бы, пока вода в кастрюле не нагреется». Прекрасно! На этом этапе между математиками и физиками царит полное согласие. Различие в подходе обнаруживается при попытке решить следующую задачу.

Вы снова находитесь в летней кухне. В вашем распоряжении нерастопленная плита, коробок спичек, кран с холодной водой и кастрюля, в которую налита холодная вода. Требуется нагреть кастрюлю воды. Что бы вы стали делать? Большинство людей отвечают: «Зажег бы плиту и поставил кастрюлю с водой на огонь». Если вы думаете так же, то вы физик! Математик бы вылил воду из кастрюли и тем самым свел бы новую задачу к предыдущей, которая решена.

Мы могли бы продвинуться еще на один шаг и рассмотреть случай, когда кастрюля с холодной водой уже поставлена на огонь. Как получить горячую воду в этом случае? Физик просто подождал бы, пока вода не нагреется, а математик погасил бы огонь, вылил воду из кастрюли и тем самым свел бы нашу новую задачу к первой (или ограничился бы тем, что погасил огонь, сведя задачу ко второй, уже решенной).

Еще более наглядно различие между физиком и математиком проявляется в следующем («драматическом») варианте задачи. Представьте себе, что в доме, где вы находитесь, начался пожар. В вашем распоряжении пожарный кран и шланг (не присоединенный ни к чему). Как потушить пожар? Ясно, что прежде всего необходимо присоединить шланг к крану, а затем пустить струю воды в пламя. Предположим теперь, что в вашем распоряжении пожарный кран, шланг (не присоединенный ни к чему) и никакого пожара в доме нет. Как бы вы стали тушить пожар?. Математик сначала поджег бы дом, чтобы свести задачу к предыдущей.

212. Фон Нейман и задача о мухе.

Эту задачу можно решить двумя способами: «трудным» и «легким».

Два поезда, находившиеся на расстоянии 200 км друг от друга, сближаются по одной колее, причем каждый развивает скорость 50 км/ч. С ветрового стекла одного локомотива в начальный момент движения взлетает муха и принимается летать со скоростью 75 км/ч вперед и назад между поездами, пока те, столкнувшись, не раздавят ее. Какое расстояние успевает пролететь муха до столкновения?

С каждым из поездов муха успевает повстречаться бесконечно много раз. Чтобы найти расстояние, которое муха преодолела в полете, можно просуммировать бесконечный ряд расстояний (эти расстояния убывают достаточно быстро, и ряд сходится). Это — «трудное» решение. Чтобы получить его, вам понадобятся карандаш и бумага. «Легкое» решение состоит в следующем. Поскольку в начальный момент расстояние между поездами равно 200 км, а каждый поезд развивает скорость 50 км/ч, то от начала движения до столкновения проходит 2 ч. Все эти 2 ч муха находится в полете. Поскольку она развивает скорость 75 км/ч, то до того момента, как столкнувшиеся локомотивы раздавят ее, муха успеет пролететь 150 км. Вот и все!

Один из выдающихся математиков современности, Джон фон Нейман, когда ему задали эту задачу, задумался лишь на миг и сказал: «Ну, конечно, 150 км!» Приятель спросил его: «Как вам удалось так быстро получить ответ?» «Я просуммировал ряд», — ответил математик.

213.

О фон Неймане рассказывают следующую забавную историю.

Некогда он консультировал специалистов, строивших ракету-носитель для космического корабля. Увидев остов ракеты, фон Нейман спросил у сопровождавших его сотрудников: «Кто сконструировал ракету?» «Наши инженеры», — ответили ему. «Инженеры! — презрительно повторил фон Нейман. — Я разработал полную математическую теорию ракет. Возьмите мою работу 1952 г. и вы найдете там все, что вас интересует». Специалисты раздобыли работу, о которой говорил фон Нейман, сдали на слом разработанную ими конструкцию ракеты (на которую к тому времени было израсходовано 10 млн долларов) и построили новую ракету, неукоснительно следуя рекомендациям фон Неймана. Но их постигла неудача: при нажатии на кнопку «Пуск» раздался оглушительный взрыв, и ракета разлетелась на мелкие кусочки. В гневе ракетчики позвали фон Неймана и спросили: «Мы выполнили все ваши рекомендации, а ракета все- таки взорвалась при запуске. Почему?» Фон Нейман ответил: «То, о чем вы говорите, относится к так называемой теории сильного взрыва. Я рассмотрел ее в своей работе 1954 г. В ней вы найдете все, что вас интересует».

214.

Рассказывают, будто в Принстоне жила девочка, которой никак не давалась арифметика. И вдруг за какие-нибудь два месяца она стала великолепно успевать по этому предмету. Мать спросила у нее, в чем причина неожиданных успехов. Девочка ответила: «Как-то раз я услышала, что в нашем городе есть профессор, который хорошо разбирается в арифметике. Я узнала, где он живет, пришла к нему, и с тех пор он каждый день помогает мне готовить уроки. Объясняет он все очень понятно». Мать несколько озадаченно спросила, не знает ли дочь, как фамилия профессора. Девочка ответила: «Точно не скажу, не помню. Кажется, Эйнштейн или как-то очень похоже».

215.

В разговоре с одним из своих коллег Эйнштейн заметил однажды, что не хотел бы преподавать в колледже с совместным обучением юношей и девушек. По его мнению, юноши смотрели бы на красивых сокурсниц и не уделяли бы должного внимания математике и физике. Знакомый Эйнштейна возразил: «Вас бы юноши слушали, боясь проронить слово». Эйнштейн ответил: «Такие юноши не стоят того, чтобы им преподавать».

216.

Следующий анекдот отчетливо показывает различие между физиком и математиком.

Физик и математик летят на одном самолете из Калифорнии в Вашингтон. Каждого из них попросили по прибытии в Вашингтон представить отчет обо всем увиденном в пути. Пролетая над Канзасом, оба увидели далеко внизу черную овцу. Физик записал в блокноте: «В Канзасе водится черная овца». Математик также сделал соответствующую запись в своем блокноте: «Где-то на Среднем Западе водится овца, черная сверху».

 

В. Истории о вермонтцах

 

217.

Предыдущая история напомнила мне один случай, происшедший с американским президентом Кальвином Кулиджем. Вместе с группой друзей Кулидж однажды посетил животноводческую ферму. Когда они подошли к стаду овец, один из друзей президента заметил: «Я вижу, что овец недавно остригли». «По крайней мере с этой стороны они выглядят так, как будто их остригли,» — отозвался Кулидж.

218.

Когда юморист Уилл Роджерс собрался на прием к президенту Кулиджу, его предупредили, что президента невозможно рассмешить. Роджерс спокойно ответил: «Ничего, я все-таки попробую». И ему действительно удалось рассмешить Кулиджа. Когда Роджерса подвели к президенту и представлявший произнес: «Мистер Роджерс, позвольте представить вас президенту Кулиджу», Уилл Роджерс повернулся к президенту и с любезной улыбкой сказал: «Простите, я не расслышал вашей фамилии. С кем имею честь?»

219.

Кальвин Кулидж был типичным вермонтцем, а я лоблю истории о вермонтцах. Вот одна из них. Человек проходит мимо дома вермонтского фермера. Хозяин сидит на крыльце в кресле-качалке и невозмутимо покачивается. Прохожий замечает: «Так и качаетесь всю жизнь?» На что хозяин дома отвечает: «Пока еще не всю».

220.

Вермонтцам (по крайней мере таким, какими мы знаем их по бесчисленным юмористическим историям) присуща одна характерная черта: если вермонтца спросить о чем-нибудь, он даст точный ответ, но нередко умолчит об информации, которая может относиться к делу и быть весьма существенной. Великолепной иллюстрацией этой особенности может служить анекдот об одном вермонтском фермере, который отправился на соседнюю ферму, чтобы спросить у ее владельца: «Лем, что ты давал своей лошади в прошлом году, когда у нее были колики?» Лем ответил: «Отруби с черной патокой». Фермер вернулся домой. Через неделю он снова пришел к соседу и сообщил: «Лем, я дал своей лошади отрубей с черной патокой, и она сдохла». Лем ответил: «Моя тоже».

221.

Из историй о вермонтцах мне особенно нравится рассказ о туристе, путешествовавшем по Вермонту. Однажды он оказался на развилке. У обочины одной дороги стоял указатель «К устью реки Белой». У обочины другой дороги тоже стоял указатель «К устью реки Белой». Турист задумчиво почесал в затылке и спросил у стоявшего неподалеку вермонтца: «Если обе дороги ведут к устью реки Белой, то не все ли равно, по какой дороге мне идти?» «Мне все равно», — ответил вермонтец.

 

Г. Так ли очевидно?

 

222.

Эту историю рассказывают о многих математиках. Некий профессор во время лекции, сформулировав теорему, сказал: «Доказательство очевидно». Студент поднял руку и спросил: «А почему оно очевидно?» Профессор немного подумал, потом вышел из аудитории и, вернувшись минут через двадцать, заявил: «Да, все верно, теорема очевидна», — после чего как ни в чем не бывало продолжил лекцию.

223.

В другой истории речь идет о профессоре, встретившем в коридоре студента. Студент спросил: «Профессор! Я не понял доказательство теоремы 2, которое вы привели на лекции. Не могли бы вы объяснить мне его еще раз?» Профессор оцепенел на несколько минут, а очнувшись, сказал: «…что и требовалось доказать». Студент переспросил: «Так как же все-таки доказать теорему?» Профессор снова впал в транс и, снова вернувшись на землю, сказал: «…что и требовалось доказать». «Да, но вы так и не сказали мне, как доказывается теорема». «Хорошо, я приведу вам другое доказательство», — пообещал профессор. Он снова оцепенел и, придя в себя, снова сообщил: «…что и требовалось доказать». Несчастный студент впал в отчаяние. «Послушайте, — заметил профессор, — я привел вам три доказательства теоремы, и ни одно из них вы не поняли. Боюсь, что больше я ничем не смогу вам помочь». С этими словами профессор удалился.

224.

Рассказывают, что один известный физик выступал с лекцией перед группой коллег. Закончив свое выступление, он сказал: «А теперь я отвечу на любые вопросы». Один из слушателей поднял руку и обратился к докладчику: «Я не понял, как вы доказали теорему B». Физик ответил: «Это не вопрос».

225.

В бытность мою аспирантом в Принстонском университете я вместе с товарищами составил довольно любопытный перечень толкований слова «очевидно» различными профессорами математического факультета. Не стану сейчас приводить полностью фамилии профессоров, ограничусь лишь первыми буквами.

Когда профессор A. называет какое-нибудь утверждение очевидным, то это означает, что, отправившись домой и поразмыслив в течение нескольких недель, вы поймете, почему оно правильно.

Когда профессор Л. называет какое-нибудь утверждение очевидным, то это означает, что, отправившись домой и посвятив размышлениям над смыслом. сказанного весь остаток своих дней, вы, может быть, когда-нибудь поймете, почему оно правильно.

Когда профессор Ч. называет какое-нибудь утверждение очевидным, то это означает, что уже две недели, как оно известно аудитории.

Когда профессор Ф. называет какое-нибудь утверждение очевидным, то это означает, что оно скорее всего неверно.

 





Поделиться с друзьями:


Дата добавления: 2016-11-20; Мы поможем в написании ваших работ!; просмотров: 731 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Неосмысленная жизнь не стоит того, чтобы жить. © Сократ
==> читать все изречения...

2333 - | 2042 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.