Глава 4. Энергия и индустриальный век
Лекции.Орг

Поиск:


Глава 4. Энергия и индустриальный век




Тепло — соперник гравитации.С момента появления теории теплопроводности математика, физика и ньютоновская наука перестали быть синонимами. В физике сосуществуют две универсалии: тепло и гравитация. Более того, как был вынужден признать позднее Конт, эти две универсалии — антагонисты. Гравитация действует на инертную массу, которая подчиняется гравитации, не испытывая ее действия иным путем, кроме как через движение, которое приобретает или передает. Тепло преобразует вещество, определяет изменения состояния и вызывает изменения внутренних свойств. Закон Фурье описывает постепенное установление равновесия. Теплопроводность приводит к все большему выравниванию распределения температуры до тех пор, пока распределение во всем теле не станет однородным. Всякий знает, что выравнивание температуры — процесс необратимый.

Принцип сохранения энергии.В 1847 г. Джоуль понял, что связи, обнаруженные между выделением или поглощением тепла, электричеством и магнетизмом, протеканием химических реакций, а также биологическими объектами, носят характер «превращения». Идея превращения, опирающаяся на постулат о количественном сохранении «чего-то» при его качественных изменениях, обобщает то, что происходит при механическом движении. Как мы уже знаем, полная энергия сохраняется, в то время как потенциальная энергия переходит, превращается в кинетическую, и наоборот. Джоуль определил общий эквивалент для физико-химических трансформаций, что позволило измерить сохраняющуюся величину. Впоследствии эта величина стала известна как «энергия». Сохранение энергии при самых различных преобразованиях, претерпеваемых физическими, химическими и биологическими системами, стало путеводным принципом в исследовании новых процессов. Самый важный вклад термодинамики в естествознание — понятие необратимости.

Тепловые машины и стрела времени.Мир космология Томсона описывала как машину, в которой тепло превращается в движение лишь ценой определенных необратимых потерь и бесполезной диссипации (рассеивания). Соответственно уменьшались различия в природе, способные производить механический эффект. Мир использует эти различия при переходе от одного превращения к другому и стремится к конечному состоянию теплового равновесия — «тепловой смерти».

Рождение энтропии. В 1865 г. Клаузиус ввел новое понятие — энтропия. Первоначально Клаузиус намеревался четко разграничить понятия сохранения и обратимости. В отличие от механических превращений, для которых обратимость и сохранение совпадают, при физико-химическом превращении энергия может сохраняться даже в том случае, если преобразование необратимо. Это, в частности, относится к трению, когда движение превращается в тепло, нам необходимо выйти за рамки закона сохранения энергии и найти способ, позволяющий выразить различие между «полезными» обменами энергией в цикле Карно и «диссипированной» энергией, теряемой необратимо. Именно такую возможность и предоставляет введенная Клаузиусом новая функция, получившая название «энтропия» и обычно обозначаемая буквой S.

Для изолированных систем будущее всегда расположено в направлении возрастания энтропии. Какая система может быть изолирована лучше, чем наша Вселенная? Эта идея легла в основу космологической формулировки первого и второго начал термодинамики, предложенной Клаузиусом в 1865 г.: энергия мира постоянна; энтропия мира стремится к максимуму. Возрастающая энтропия перестает быть синонимом потерь. Теперь она относится к естественным процессам внутри системы. Под влиянием этих процессов система переходит в термодинамическое «равновесие», соответствующее состоянию с максимумом энтропии.

Обратимые преобразования принадлежат классической науке в том смысле, что определяют возможность воздействия на систему, управления системой. Динамическим объектом можно управлять, варьируя начальные условия. Аналогичным образом термодинамическим объектом, определяемым в терминах обратимых преобразований, можно управлять, изменяя граничные условия. Необратимость проявляется в форме неуправляемых изменений, происходящих в тех случаях, когда система выходит из-под контроля.

Необратимые процессы можно рассматривать как последние остатки самопроизвольной внутренней активности, проявляемой природой, когда человек с помощью экспериментальных устройств пытается обуздать ее. Таким образом, «отрицательное» свойство — диссипация — показывает, что в отличие от динамических объектов термодинамические объекты управляемы не до конца. Иногда они «выходят из повиновения», претерпевая самопроизвольное изменение.

Рассмотрим приращение энтропии dS за короткий интервал времени dt. В случае идеальной и реальной тепловой машины ситуация совершенно различная. В первом случае dS можно полностью выразить через теплообмен между машиной и окружающей средой. Можно поставить специальные опыты, в которых система будет отдавать тепло вместо того, чтобы поглощать его. Соответствующее приращение энтропии при этом лишь изменит знак. Такую составляющую полного приращения энтропии мы обозначим deS. Она обратима в том смысле, что может быть и положительной, и отрицательной. В реальных машинах мы сталкиваемся с совершенно иной ситуацией. В них, помимо обратимого теплообмена, происходят необратимые процессы: тепловые потери, трение и т.д. Они приводят к увеличению энтропии, или производству энтропии, внутри системы. Увеличение энтропии, которое мы обозначим diS, не может изменять знак при обращении теплообмена с внешним миром. Как все необратимые процессы (например, теплопроводность), производство энтропии всегда происходит в одном и том же направлении. Иначе говоря, величина diS может быть только положительной или обращаться в пуль в отсутствие необратимых процессов.

Для термодинамической системы все изменения не эквивалентны. В этом и состоит физический смысл разложения dS = deS + diS. Самопроизвольное изменение diS, направленное к равновесию, отличается от изменения deS, определяемого и управляемого варьированием граничных условий (например, температуры окружающей среды). В случае изолированной системы равновесие выступает в роли притягивающего множества, или «аттрактора», неравновесных состояний. Следовательно, наше первоначальное утверждение допускает обобщение: эволюция к состоянию-аттрактору отличается от всех других изменений, в особенности от изменений, обусловленных варьированием граничных условий.

В природе невозможны те процессы, при которых природа дает меньшее предпочтение конечному состоянию, чем начальному. Предельный случай представляют обратимые процессы; в них природа испытывает одинаковое предпочтение как к начальному, так и к конечному состоянию, и поэтому переход из одного состояния в другое может происходить в обоих направлениях. Сколь чуждым выглядит такой язык по сравнению с языком динамики! В динамике система изменяется вдоль заданной раз и навсегда траектории, не забывая начальную точку (так как начальные условия определяют всю траекторию при любых значениях времени). В случае же изолированной системы все неравновесные ситуации порождают эволюцию к равновесному состоянию одного и того же типа. К моменту достижения равновесия система забывает свои начальные условия, т.е. способ, которым она была приготовлена.

Мы сталкиваемся, таким образом, с двумя принципиально различными описаниями: динамикой, применимой к миру движения, и термодинамикой, наукой о сложных системах, наделенных внутренней способностью эволюционировать в сторону увеличения энтропии.

Принцип порядка Больцмана. Второе начало термодинамики содержит два принципиально важных элемента: 1) «негативный», выражающий запрет на некоторые процессы, т.е. их невозможность (тепло может распространяться от горячего источника к холодному, но не от холодильника к нагревателю); 2) «положительный», конструктивный. Второй элемент является следствием первого: запрет на некоторые процессы позволяет нам ввести функцию (энтропию), монотонно возрастающую для изолированных систем. Энтропия ведет себя как аттрактор для изолированных систем.

Проблемы перехода от микроскопического уровня к макроскопическому оказались необычайно плодотворными для физики в целом. Первым вызов принял Больцман. Тонкая физическая интуиция подсказывала ему, что необходимо выработать какие-то новые понятия, которые позволили бы обобщить физику траекторий, распространив ее на системы, описываемые термодинамикой. Следуя по стопам Максвелла, Больцман принялся искать концептуальные новации в теории вероятности.

Больцман первым понял, что необратимое возрастание энтропии можно было бы рассматривать как проявление все увеличивающегося молекулярного хаоса, постепенного забывания любой начальной асимметрии, поскольку асимметрия приводит к уменьшению числа комплексов по сравнению с состоянием, отвечающим максимальному значению вероятности Р. Придя к такому выводу, Больцман решил отождествить энтропию S с числом комплексов: каждое макроскопическое состояние энтропия характеризует числом способов, которым оно может быть достигнуто. Знаменитое соотношение Больцмана S=k*lnP[4] выражает ту же идею количественно. Коэффициент пропорциональности k в этой форме — универсальная постоянная, известная под названием «постоянная Больцмана». Результаты Больцмана означают, что необратимое термодинамическое изменение есть изменение в сторону более вероятных состояний и что состояние–аттрактор есть макроскопическое состояние, соответствующее максимуму вероятности.

Забывание начальных условий возможно потому, что, как бы ни эволюционировала система, она, в конечном счете, перейдет в одно из микроскопических состояний, соответствующих макроскопическому состоянию хаоса и максимальной симметрии, поскольку именно такие макроскопические состояния составляют подавляющее большинство всех возможных микроскопических состояний. Коль скоро наиболее вероятное состояние достигнуто, система отклоняется от него лишь на небольшие расстояния и на короткие промежутки времени. Иначе говоря, система лишь флуктуирует около состояния–аттрактора.

Карно и Дарвин.Равновесные структуры можно рассматривать как результат статистической компенсации активности микроскопических элементов (молекул, атомов). На глобальном уровне равновесные структуры, по определению, инертны. По той же причине они «бессмертны»: коль скоро равновесная структура образовалась, ее можно изолировать и поддерживать бесконечно долго без дальнейшего взаимодействия с окружающей средой. Но при изучении биологической клетки или города мы сталкиваемся с совершенно другой ситуацией: эти системы не только открыты, но и существуют только потому, что они открыты. Их питают потоки вещества и энергии, которые поступают из внешнего мира. Мы можем изолировать кристалл, но если города и клетки отрезать от окружающей среды, они погибнут.

Как, например, совместить дарвиновскую эволюцию (статистический отбор редких событий) со статистическим исчезновением всех индивидуальных особенностей, всех редких событий, о котором говорит Больцман? Интерпретация Больцмана влечет за собой забывание начальных условий, «разрушение» начальных структур, тогда как дарвиновская эволюция ассоциируется с самоорганизацией, с неуклонно возрастающей сложностью.

Равновесная термодинамика была первым ответом физики на проблему сложности природы. Этот ответ получил свое выражение в терминах диссипации энергии, забывания начальных условий и эволюции к хаосу. Какое значение имеет эволюция живых существ в мире, описываемом термодинамикой и все более беспорядочном? Какова связь между термодинамическим временем, обращенным к равновесию, и временем, в котором происходит эволюция к все возрастающей сложности?





Дата добавления: 2016-11-19; просмотров: 297 | Нарушение авторских прав | Изречения для студентов


Читайте также:

Рекомендуемый контект:


Поиск на сайте:



© 2015-2020 lektsii.org - Контакты - Последнее добавление

Ген: 0.003 с.