Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Магнитно-резонансная томография

Федеральное агентство по образованию

Государственное образовательное учреждение высшего профессионального образования

НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

ИМ.Р.Е.АЛЕКСЕЕВА

НАУЧНО-ОБРАЗОВАТЕЛЬНЫЙ ИНСТИТУТ ЯДЕРНОЙ ЭНЕРГЕТИКИ

И ТЕХНИЧЕСКОЙ ФИЗИКИ

 

Реферат

 

 

Ядерно-магниторезонансная томография.

 

Выполнила: ст. гр. 09-МТ

Панина Е.С.

Принял: Снегирев С. Д.

 

Н.Новгород

2012 год

Томография

Слово томография можно перевести с греческого как «изображение среза». Это означает, что назначение томографии – получение послойного изображения внутренней структуры объекта исследования.

Классическая рентгенодиагностика ставит перед томографией задачу получения изолированных теневых изображений внутренних органов и отдельных их частей на рентгеновской пленке. В обычной методике рентгеновская трубка и детектор неподвижны и мы видим суммарную плоскую картину всех слоев, лежащих на пути луча (теневое изображение). Если же излучатель и детектор подвижны, то можно разделить суммарную картинку за счет «размазывания» тени во всех слоях кроме одного неподвижного слоя (неподвижного относительно двигающихся излучателя и детектора). Практически это достигается за счет расположения излучателя и детектора на концах «коромысла». Само C-образное коромысло двигается вокруг оси, расположенной на его дуге. В момент снимка рентгеновская трубка перемещается над столом с пациентом по дуге, а кассета, расположенная под столом, совершает движение в противоположном направлении. Коромысло вращается вокруг оси примерно на 30-60 градусов. В результате контрастное изображение будет получаться только на уровне оси вращения. Толщина выделяемого слоя находится в обратной зависимости от величины дуги, пробегаемой рентгеновской трубкой.

Если выбирают малый угол перемещения, около 5 градусов, то получают изображение толстого слоя, т.е. целой зоны. Этот вариант получил название зонографии. Если на томографе изменить уровень центра вращения, то изменится и уровень выделяемого слоя. Показания к томографии достаточно широки. Томография оказалось очень ценной в пульмонологии, т.к. позволяет выявить полости распада в туберкуломах или опухолях, увеличения внутригрудных лимфоузлов. Она дает возможность изучить структуру околоносовых пазух, гортани, получить детали изображения позвоночника. Задача получения изображения какого-либо участка тела или органа, например, головного мозга, с помощью линейной томографии неразрешима, так как требует получения тысяч и тысяч снимков отдельных участков слоя и синтеза изображения сначала единого слоя, а потом и всего органа. Практическое осуществление данной цели возможно лишь при условии применения в томографии принципиально новых элементов и материалов, позволяющих обрабатывать огромное количество информации и синтезировать единое изображение.

На сцену вышли новые методы - компьютерная рентгеновская томография и ядерно-магниторезонансная томография, которые явились следствием революционного развития классической томографии. Именно они позволили сделать исследование более безопасным и более информативным. Сегодня мы не представляем себе медицину без этих методов исследования. И каждый из них имеет свои явные преимущества. Другими словами, эти методы не всегда взаимозаменяемы. Поэтому перед назначением исследования необходимо решить какой из методов томографии будет максимально информативным в данной ситуации и с данным пациентом.

 

 

Магнитно-резонансная томография

ЯМР – общепризнанное сокращение словосочетания «ядерный магнитный резонанс». ЯМР – томография (или МРТ) – это относительно новый вид получения изображения внутренних органов, который начал входить в медицинскую практику в 80-х годах прошлого столетия.

История показывает, что каждое новое физическое явление или метод проходит трудный путь, начинающийся с момента открытия и проходящий через несколько фаз. Сначала почти никому не приходит мысль о возможности применения этого явления в повседневной жизни. Затем наступает фаза развития, во время которой данные исследований убеждают всех в его большой практической значимости. Затем следует фаза стремительного взлета. Так произошло и с явлением ЯМР, открытым Е.К.Завойским в 1944 г. в форме парамагнитного резонанса и независимо открытого Блохом и Парселлом в 1946 г. в виде резонансного явления магнитных моментов атомных ядер.

ЯМР-томография принципиально отличается от рентгеновской компьютерной томографии, но тоже относится к лучевой диагностике. В чем же его отличие? Самое главное кроется в излучении, используемом для томографии. Это радиоволновой диапазон, обычно с длиной волны от 1 до 300 м. Почему же его сравнивают с КТ? Ответ прост. МРТ и КТ используют совершенно одинаковые принципы автоматического, управляемого компьютером сканирования, обработки и получения послойного изображения внутренней структуры органов. В чем же преимущества ЯМР-томографии?

  • Первое преимущество – замена рентгеновских лучей радиоволнами. Это позволяет устранить ограничения на контингент обследуемых (детей, беременных), т.к. снимается понятие лучевой нагрузки на пациента и врача. Кроме того, отпадает необходимость в проведении специальных мероприятий по защите персонала и окружающей среды от рентгеновского излучения.
  • Второе преимущество – чувствительность метода к отдельным жизненно важным изотопам и особенно к водороду, одному из самых распространенных элементов мягких тканей. При этом контрастность изображения на томограмме обеспечивается за счет разности в концентрациях водорода в различных участках органов и тканей. При этом исследованию не мешает фон от костных тканей, ведь концентрация водорода в них даже ниже, чем в окружающих тканях.
  • Третье преимущество заключается в чувствительности к различным химическим связям у различным молекул, что повышает контрастность картинки.
  • Четвертое преимущество кроется в изображении сосудистого русла без дополнительного контрастирования и даже с определением параметров кровотока.
  • Пятое преимущество заключается в большей на сегодня разрешающей способности исследования – можно увидеть объекты размером в доли миллиметра.
  • И, наконец, шестое – МРТ позволяет легко получать не только изображения поперечных срезов, но и продольных.

Конечно же, как и любая другая методика, ЯМР-томография имеет свои недостатки. К ним относят:

  • Необходимость создания магнитного поля большой напряженности, что требует огромных энергозатрат при работе оборудования и/или использования дорогих технологий для обеспечения сверхпроводимости. Радует то, что в научной литературе нет данных об отрицательной влиянии на здоровье магнитов большой мощности.
  • Низкая, особенно в сравнении с рентгенологическими, чувствительность метода ЯМР-томографии, что требует увеличения времени просвечивания. Это приводит к появлению искажений картинки от дыхательных движений (что особенно снижает эффективность исследования легких, исследовании сердца).
  • Невозможность надежного выявления камней, кальцификатов, некоторых видов патологии костных структур.
  • Невозможность обследования некоторых больных, например с клаустрофобией (боязнью закрытых пространств), искусственными водителями ритма, крупными металлическими имплантатами. Не следует забывать и о том, что относительное противопоказание для ЯМР-томографии - беременность. Ну а кардиостимуляторы – строгое противопоказание к исследованию.

Однако, прогресс не стоит на месте и возможно некоторые из недостатков в скором времени будут устранены.

В чем же техническая и физическая суть ЯМР-томографии? Ядерным магнитным резонансом называется избирательное поглощение электромагнитных волн (читайте, радиоволн) веществом (в данном случае телом человека), находящимся в магнитном поле, что возможно благодаря наличию ядер с ненулевым магнитным моментом. Во внешнем магнитном поле протоны и нейтроны этих ядер как маленькие магниты ориентируются строго определенным образом и меняют по этой причине свое энергетическое состояние. Расстояние между этими уровнями энергии столь мало, что переходы между ними способно вызвать даже радиоизлучение. Энергия радиоволн в миллиарды раз меньше, чем у рентгеновского излучения, поэтому они не могут вызвать какие-либо повреждения молекул. Итак, сначала происходит поглощение радиоволн. Затем происходит испускание радиоволн ядрами и переход их на более низкие энергетические уровни. И тот, и другой процесс можно зафиксировать, изучая спектры поглощения и излучения ядер. Эти спектры зависят от множества факторов и прежде всего – от величины магнитного поля. Для получения пространственного изображения в ЯМР-томографе, в отличие от КТ нет необходимости в механическом сканировании системой источник-детектор (антенна передатчик и приемник в случае ЯМР). Эта задача решается изменением напряженности магнитного поля в различных точках. Ведь при этом будет изменяться частота (длина волны), на которой происходит передача и прием сигнала. Если мы знаем величину напряженности поля в данной точке, то можем точно связать с ней передаваемый и принимаемый радиосигнал. Т.е. благодаря созданию неоднородного магнитного поля можно настраивать антенну на строго определенный участок органа или ткани без ее механического перемещения и снимать показания с этих точек, лишь меняя частоту приема волны.

В настоящее время в клинической практике применяются 2 типа МР томографов с резистивным и сверхпроводящим магнитом.

В последнем для получения магнитного поля используется явление сверхпроводимости, т. е. катушки электромагнита охлаждаются с помощью жидкого азота и гелия. Аппараты имеют различную напряженность магнитного поля от 0.06 до 1.5 Тл и выше. При этом резистивные магниты дают более низкую напряженность магнитного поля, чем сверхпроводящие магниты. В состав аппарата, помимо магнита, входят радиочастотные и градиентные катушки, которые придают определенную форму основ ному полю для выбора толщины среза и направления плоскости исследования и принимают резонансный сигнал. В аппарат входят также блоки управления, компьютер, устройства для воспроизведения и хранения изображения. В большинстве случаев МР томография основывается на исследовании распределения протонов, т. е. атомов водорода (Н1), так как они наиболее распространены в человеческом организме и для получения резонанса от них требуется создание магнитного поля небольшого напряжения.

Следующий этап – обработка информации от всех просканированных точек и формирование изображения. В результате компьютерной обработки информации получаются изображения органов и систем в «срезах» (Количество срезов зависит от целей исследования, в среднем их 8, но иногда — до 16 за одно исследование)., сосудистых структур в различных плоскостях, формируются трехмерные конструкции органов и тканей с высокой разрешающей способностью.



<== предыдущая лекция | следующая лекция ==>
IV. Последствия, применяемые к работнику после его отнесения к категории А, В, С. | Перший день — це урочистий час.
Поделиться с друзьями:


Дата добавления: 2016-11-19; Мы поможем в написании ваших работ!; просмотров: 338 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Наглость – это ругаться с преподавателем по поводу четверки, хотя перед экзаменом уверен, что не знаешь даже на два. © Неизвестно
==> читать все изречения...

2675 - | 2239 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.013 с.