ПАЙДА БОЛУ МЕХАНИЗМІ.
Лекция жоспары:
1. Кардиомиоцитегі әрекет потенциалы.
2. Миокард жасушасындағы ионнық насостар.
3. Кардиомиоцит фазалары.
4. Кардиомиоцитің өткізгіштігін зерттеу әдістері.
5. Эйтховен теориясы.
6. ЭКГ. Жүрек потенциалын өлшеу әдістері.
Лекция мақсаты: Жүрек миокардында биопотенциалдың пайда болуы механизмін, деполяризация ұзақтығының ерекшеліктерін талдау. Жүрек бұлшық етінде биопотенциалдың таралуын қарастыру. Эйнтховен теориясының негізгі және ЭКГ түсірудің принциптерімен танысу.
Жүрек бұлшық ет жасушаларындағы әрекет потенциалының түрі мен пайда болуы механизмі және оның деполяризация ұзақтығы жүйке талшықтары мен қаңқа сүйек бұлшық ет жасушаларындағы әрекет потенциалының ұзақтығынан өзгеше. Мыалы, кальмар аксонындағы әсер потенциалының ұзақтығы 0,5-1 мс болса қаңқа сүйек бұлшық еттегі 2-3 мс болады, ал жүрек қарыншасының миокардындағы әрекет потенциалының ұзақтығы 250-300 мс созылады (1 сурет).
jМ |
I |
III |
II |
j -50 -100 |
-50 -100 |
t |
250-300 мс |
1 сурет
Мұндай ұзақ уақыт жүрек бұлшық ет құрылымының қозуы мен жиырылуының синхронды болуын қамтамасыз етеді, ол өз кезегінде қан айдауға мүмкіндік береді.
Кардиомиоциттағы әрекет потенциалының өзгеше болуы жасушаның ішкі және сыртқы орталарындағы иондардың таралуына тікелей байланысты. Кардиомиоцит пен қаңқа сүйегі бұлшық еттерінде калии және натрии иондарының концентрациясы жақын. Бірақ, кардиомиоцитте әрекет потенциалының пайда болуы мен жүректің жиырылуында кальции иондарының үлкен үлесі бар екендігі анықталды. Кальции ионы жасушаның сыртында 2 ммоль/л болса, ішінде өте аз 10-4 ммоль/л шамасында. Ал жүректің жиырылуы кезінде, жасуша ішінде бос кальции иондарының концентрациясы 103 ммоль дейін артуы мүмкін, бірақ бұл артық иондар реполяризация кезінде жасушадан сыртқа шығарылады.
Кардиомиоциттегі иондар баланысын калии, натрии және кальции иондық насостары қамтамасыз етеді, олар жасушадан сыртқы ортаға активті тасымалдау арқылы натрии және кальции иондарын айдайды, ал пассивті тасымалдау арқылы ішке кальции, натрии, сыртқы ортаға калии иондарын айдайды (2 сурет).
Ca2- [10- 4] Na- [15] K+ [145] 2K+ |
Са2- АТфаза |
К-Na АТфаза |
Пассивті тасымаладу
Са2- [ 2]
Na- [145] Активті тасымалдау
K+ [4]
3 Na-
2 сурет
Бұл насостардың жұмысын саркомадағы миокардит жасушасындағы калии-натрии АТФаза мен кальции АТФаза ферментері қамтамасыз етеді. Мембрананың 1 мкм2 ауданындағы калии-натрии насосының тығыздығы 1000, яғни 1 см2 ауданға 1011 насостан келеді. Иондық насостар 1 секундта иондарды 20 рет айдаса, онда 1 см2 аудандағы насостар 1 секундта иондарды 2∙1012 рет айдар еді. 1 иондық насос 1 ретте 3 натрии ионын айдайтыны белгілі, сонда 1 см2 аудандағы барлық насостар 1 секундта 6∙1012 ионды айдайды. Бұл иондар санын Авогадро санына (6,02×1023 моль) бөлсек 10×10-12 моль/см2×с саны келіп шығады, мұнан мембрананың 1 см2 ауданы арқылы 1 секундта 10 моль натрии ионы тасымалданатын анықтайймыз.
Тыныштық қалыптағы мембранның натрии және кальции иондарын өткізуі өте төмен PNa/PK = 0,05, сол секілді PСа/PК қатынасы да төмен, оның үстіне мембрана сыртында кальции иондарының концентрациясы басқа иондарға салыстырғанда аз. Сондықтан миокардтың тыныштық потенциалы жасушаның екі жағындағы калии иондарының концентрациясымен анықталынады.
Миокардтың әрекет потенциалы үш түрлі фазамен (кезеңмен) сипаталады: I фаза-деполяризация кезіндегі күй, II фаза- плато кезіндегі күй және III фаза- реполяризация кезіндегі күй.
I фаза – деполяризациялық кезең. Бұл кезең мембрананың натрии иондарын өткізуінің күрт өсуімен PK : PNa = 1:20 және мембранадағы jМ тыныштық потенциалының кемуімен (потенциал таңбасының өзгеруімен) сипатталады. Мебранадағы потенциал шамасы -60мВ жеткенді натрии каналдары 1-2 миллисекундтан 6 милисекундқа дейін ашылады (3сурет).
Фаза | Каналдар сипатамасы | Ионды каналдардың күйі | Ток бағыты |
I - Деполяризация | ТNa= 1-2 мс jNa = -60мВ | Na Ca K | Na+ |
3 сурет
II фаза-плато (жазықтық). Бұл кезеңде мембранадағы әрекет потенциал шамасы +30 мВ тан 0 дейін төмендейді және екі түрлі каналдар бір мезгілде жұмыс істейді, яғни кальции және калии каналдары иондарды баяу өткізе бастайды. Ашылған кальция каналы баяу түрде жасушаға кальции иондарын өткізе бастайды, нәтижесінде ішке қарай бағытталған ток пайда болады:
мұндағы gCa – мембрананың Ca2- ионы үшін өткізгіштігі. Бұл пассивті тасымалдау кальции ионы үшін электрохимиялық градинет есебінен жүреді. Мембрана кальции тогының өсуімен қатарласа калии ионын өткізуін де күшейтеді, бұл өз кезегінде мембрананың сыртына қарай бағытталған калии тогын және мембрананың сәйкес иондарды өткізгіштігін кемуін, жоғарылауын тудырады және мембрананы реполяризациялауға алып келеді (4 сурет). Осылайша пайда болған қарама қарсы бағытталған екі токтың шамасы бірте бірте теңеседі, бұл өз кезегінде мембранадағы потенциалды 0 дейін төмендетеді. Бұл кезеңде кальции мен калии токтарының қосындысы 0 ұмтылады
Фаза | Каналдар сипатамасы | Ионды каналдардың күйі | Ток бағыты |
II – Плато | ТСa=200-250 мс jСа = +30 мВ | Na Ca K | Сa+ К+ |
4 сурет
III фаза - реполяризациялау кезеңі. Бұл кезең кальции каналдарының жабылуымен, жоғарылауымен, нәтижесінде мембранадан сыртқа қарай калии тоғының күшейуімен сипатталады (5 сурет).
Фаза | Каналдар сипатамасы | Ионды каналдардың күйі | Ток бағыты |
IIІ- реполяризация | ТК = -50 мс | Na Ca K | К+ |
5 сурет.
Кардиомиоциттегі қозу құбылысын арнаулы әдістермен зерттейді. Соның бірі кальции иондарын блокатор арқылы тежеу әдісі. Миоциттегі кальции тогын (кальции иондарының ағынын) тежейтін Д-600, верапамид, Li Mn2+ металдарының катионы т.б. препараттар анықталды. Олар кальции иондарын жасушаға енуін тежейді, соның нәтижесінде мембранадағы әсер потенциалының шамасы мен түрі өзгереді. Жүрізілген тәжрибелер кальции каналдарын тетродотоксинмен, натрии ионымен тежеуге болматындығын көрсетті, бұл жағдай кардиомиоцитте жеке кальции каналдарынынң болатындығын дәлелдейді.
Келесі люминесценттік талдау әдісі. Бұл әдіс жарқырауық медузадан алынған экворин ақуызы арқылы кальции иондарының тасымалдауын бақылауға болады. Оның басты ерекшілігі кальции ионын қосып алған экворин ақузы өзінен жарық шығарып, люминесценцияланады. Экворин ақузын жүрек бұлшық еті дәрілеріне қосып береді де,арнаулы оптикалық құралдармен оның шығарған жарығының интенсивтілігін өлшейді. Осылайша алынған мәліметтер арқылы жүрек бұлшық еттерінде кальции иондарын тасымалдау кезінде әсер потенциалы өзгерісін сипаттауға болады.
Қалыпты жағдайда және патология кезінде жүрек бұлшық еттерінде кальции иондарының таралуын радионуклидті диагностика әдісі арқылы анықтайды. Осы мақсатта кальцидің Са45 изотопы қолданылады. Изотаптан шығатын бета сәулесін сканер арқылы тіркейді.
Енді жүрек бұлшық етінде қозудың (әрекет потенциалының - электр импульсінің) таралу механизмін қарастырайық. Жүрек құлақшасында орналасқан, тұрақты түрде үздіксіз электр импульсін өндіретін «синоаурикулярлы (синус) түйіні (Кейт-Флака түйіні)» деп аталатын ерекше нүкте бар. Ол өндірген электр импульсі жүрек бұлшық еттерінде таралып, жүрек қарыншасы мен жүрекшелерді кезек- кезгімен синхронды түрде жиырылуын қамтамасыз етеді. Жүректің жиырылу жиілігі синоаурикулярлы (синус) түйінде (СТ) автоматты түрде өндірілген қозуға (электр импульсіне) тікелей байланысты, сондықтан СТ «пейсмекер» деп атайды.
СТ өндірілген электр импульсі (әрекет потенциалы) алдымен жүрек құлақшасына 1 м/с жылдамдықпен жетеді, 40 миллисекундтан соң құлақшаның барлық аймағы қозған күйге, яғни деполяризация күйіне көшеді. Жүрек құлақшасында әр түрлі жолдармен тарағын электр импульстары, жүректің фиброзды ұлпасында орналасқан, электр импульстарын өткізбейтін (қозбайтын), қарыншаны жүрекшеден бөліп тұратын атриовентрикулярлы түйінге бір мезгілде жетеді. Тек осы түйін ғана қозуды, яғни электр импульстарын қарыншадан жүрекшеге жеткізетін бірден бір жол болып саналады. Бұл түйіннің электрлік кедергісі жоғары, сондықтан онда электр импульстарының таралуы қарыншаға қарағанда 0,02-0,05 м/с баяу жылдамдықпен тарайды. Аталған құбылыс атриовентрикулярлы тежеу деп аталады. Бұл тежеу диастола кезінде қарыншада жиналған барлық қан көлемін жүрекшенің жиырылуына дейін жүрекшеге жиналуына жететіндей уақыт береді. Атриовентрикулярлы түйіннен тараған электр импульсі жүректің өткізгіш келесі буыны- Гиса шоғына (түйініне) жетеді. Бұл аймақтағы талшықтар жуан болғандықтан оларда электр импульстары 2-3 м/с жылдамдықпен тарайды. Гиса шоғынан Пуркинье талшықтары тарайды, олардың диаметрлері миокард талшығына қарағанда үлкен, сондықтан бұл талшықтрда электр импульстарының таралу жылдамдағы 4-5 м/с жетеді. Ары қарай электр импульстарның таралуы баяулайды, бұл жүрекшенің барлық бұлшық еттерінң синхронды түрде жиырылуына мүмкінді береді. Осылайша электр импулісі жүрекшенің қарынша аймағанда жиырылмаған бөлігіне жетеді(6 сурет).
1 – синоаурикуляр (синус) түйіні (0с); (Кейт-Флака түйіні). 2 – Құлақша миокарды (0,13 с); 3 - атриовентрикуляр түйіні (0,03 с); 4 - Гиса шоғы (0,08 с); 5 – Гиса шоғының аяқтары (0,09 с); 6 – Пуркинье талшағы (0,11 с); 7- Қарынша миокарды. |
6 сурет.
Жүректің электр импульсін тарату жүйесіндегі ақау аритмия немесе жүрек соғуының бұзылуы деп аталады. Мұндай ақау жүрек соғысының өте төмен (брадикардия) немесе өте жоғары (тахиаритмия) болуына алып келеді.
Медициналық практикада жүрек потенциалын өлшеу электрокардиограмма (ЭКГ) деп аталады. Оның негізіне Эйнтховенның тармақтар теориясы алынған. Бұл теорияға сәйкес жүрек диполдық моменті РЖ болатын электр диполі ретінде қарастырылады, ол жүрек қызметінің циклына сәйкес уақыт өтуіне қарай өз осі бойымен кеңістікте бұрылады, орналасуын өзгертеді. Эйнтховен жүректі үштары «оң қол - сол қол- сол аяқ» болатын тең қабырғалы үшбұрыштың ортасында орналасқан деп санауды ұсынған (7 сурет). Олай болса диполдің дипольдік моментінің үшбұрыш қабырғаларына түсіретін проекциясы жоғарыда аталған нүктелер арасындағы потенциал айырымына тең, ол өз кезгінде жүрек потенциалын сипаттайды.
Биопотенциалдары өлшенетін екі нүкте жұбы «тармақтар» деп аталады. Осыған сәйкес 1912 ж. Эйнтховен «ОҚ- СҚ-СА» тармақтарын «стандартты тармақтар жүйесі» деп атауды ұсынды және ол үш тармақтан тұрады.
І тармақ «оң қол- сол қол», ІІ тармақ «оң қол- сол аяқ», ІІІ тармақ «сол қол- сол аяқ». Әр тармаққа өз потенциалдар айырымы UI: UII: UIII сәйкес келеді. Жүрек - диполдің үшбұрыш қабарғаларына түсіретін диполдік моментінің проекциясы Pi мен потенциалдар айрымы Ui арасында мынадай тәуелділік анықталған UI: UII: UIII = РI: РII: РIII.
«Диполь-жүрек» уақытқа байланысты өз осімен айналатындықтан оның тармақтардағы проекциясы потенциалдар айрымының уақытқа тәуелділігін көрсетеді, оны электрокардиограмма (ЭКГ) деп атайды (8 сурет). Жүрек -диполдің РЖ моменті мен оның І тармақтағы проекциясы арасындағы a бұрыш жүректің электрлік осінің бағытын көрсетеді, ол көбіне жүректің анатомиялық осімен сәйкес келеді (8 сурет).
Сол қол |
Оң қол |
Сол аяқ |
P |
РI
РІ
P |
PII PIII
UII UIII
7 –сурет. 8-сурет.
ЭКГ тістерін латын әріптері P, QRS және T белгіленеді. ЭКГ-дағы Р тісі жүрек құлақшасының қозуы кезінде пайда болады, QRS- жүрек қарыншасының деполяризациясы кезіне, яғни қарыншада қозудың таралуына, ал Т тісі оның реполяризациясында сәйкес келеді.
Медицналық практикада стандартты тармақтардан басқа кардиалды униполярлы (кеуде) ЭКГ тармақтары да кең түрде қолданылады. Мұнда бір электродты активті деп атап, оны кеуде қуысының сол жақ бетінің 6 нүктесіне орналастырады. Бұл активті электрод Вильсон электродымен бірге 6 кеуде тармағын құрайды. Кеуде тармағы «V» бас латын әрпіне активті электродтың орналасқан орнына сәйкес келетін санды тіркеп жазу арқылы белгілейді, мысалы V1, V2, V3,... V6
Рис. 9 Рис 10
V1 тармағы – активті электрод оң жақ кеуде куысындағы 4 қабырға аралық нүктеге орнатылады.
V2 тармағы - активті электрод сол жақ кеуде куысындағы 4 қабырға аралық нүктеге орнатылады.
V3 тармақ - активті электрод екінші және төртінші позицияда, яғни сол жақ парастерналды сызық деңгейіндегі төртінші қабырға нүктесіне орнатылады;
V4 активті электрод сол кеуде кусындағы 5 қабырға аралық сызық бойына орнатылады;
V5 активті электрод сол жақ қолтық асты сызығының бойына орналатылады;
V6 активті элемент сол жақ қолтық асты горизонталь сызық бойына орналатылады;
ЭКГ диагностикалық мәліметі ретінде оның P, QRS және T тістерінің биіктігі және P-Q, Q-R-S,S-T, R-R интервал ұзақтығы алынады. Пациентен алынған ЭКГ мәліметтерді төмендегі кестеде берілген стандарты мәліметпен салыстырылады.
ЭКГ II тармағында қалыпты жағдайдағы жүрек биопотенциалы мен уақыт интервалың мәндері
P | Q | R | S | T | |||||
U,мВ | t,cek | U,мВ | t,cek | U,мВ | t,cek | U,мВ | t,cek | U,мВ | t,cek |
0.05-0,25 | 0-0,1 | 0-0,2 | max 0,03 | 0,03-1,6 | max 0,03 | 0-0,03- | max 0,03 | 0,25-0,6 | max 0,25 |
Интервалдың ұзақтағы, сек | |||||||||
PQ | QRS | QRST | ST | RR | |||||
0,12-0.2 | 0,06-0,09 | 0,03-0,44 | 0-0,15 | 0,7-1,0 |
Электрографияның түрлері:
ЭЭГ- электроэнцефалография, ми биопотенциалын тіркеу.
ЭМГ- электромиография, бұлшық ет биопотенциалын тіркеу.
ЭРГ- электроретинография көзге әсер ету кезіндегі көз торында пайда болатын биопотенциалды тіркеу.
Қорытынды сұрақтар:
1. Жүректегі деполяризация кезеңінің ұзақтығы.
2. Кардиомиоцит фазаларын ата.
3. Кардиомиоците биопотенциалдың таралу ерекешілігі.
4. Эйтховен теориясы.
5. ЭКГ тармақтары
6. Жүрек потенциалын өлшеу әдістері.
дебиеттер мен Web сайттар тізімі
Қазақ тілінде, негізгі:
1. Б.Көшенов Медициналық биофизика. Алматы, 2008 ж. 224 б.
2. Г. Яр-Мухамедова, Б.Көшенов. Медициналық физикадан зертханалық жұмыстар. Алматы 2006.
3. Байзак Ү.А., Құдабаев Қ.Ж. Медициналық биофизика және медтехника бойынша лабораториялық практикум. Алматы, Эверо баспасы. 2011, 304 б.
4. Байзак Ү.А. Физикалық факторларды медицинада қолдану, Шымкент, ОҚММА баспаханасы. 2002, 79 б.
Орыс тілінде, негізгі:
1. Ремизов А.Н., Медицинская и биологическая физика.- M., Высшая школа, 2003. 608 с.
2.А.Н.Ремизов, А.Г.Максина. Сборник задач по медицинской и биологической физике. –М., Дрофа 2001.
3.М.Е.Блохина, И.А.Эссаулова, Г.В.Мансурова. Руководство к лабораторным
работам по медицинской и биологической физике. –М., Дрофа 2002.
4. Самойлов В.О., Медицинская биофизика. СПб.: СпецЛит, 2004. -496 с.
5. Антонов В.Ф., Черныш А.М., В.И. Пасечник и др. Биофизика. M., Владос,2003.-288 с.
6. Н.И.Губанов, А.А. Утепбергенов. Медицинская биофизика. –М, Медицина 1978.
7. Физиология человека. B3 томах. Пер. с англ. / Под ред. P. Шмидта и Г. Тевса.- М.:Мир,2004г.
8. Владимиров Ю. A.,Рощупкин Д. И., Потапенко A. Я.,ДеевА. И., Биофизика
М:. Медицина 1999
9. Рубин A. E., Биофизика T1,Т2:M, Университет 2000,2004.
10. Байзаков У.А. и др. Медицинская техника. Алматы: Білім, 2005, 406 с.
11. Байзаков У.А. Кудабаев К.Ж. Основы медицинской техники. Шымкент, 1998, 224 с.
12. Ясуо Кагава Биомембраны. М.: Высшая школа. 1985.-303с.
Ағылшын тіліндегі:
1. Brown B.H., Smallwood R.H. Medical Physics and Biomedical Engineering (Institute of Physics, Philadelphia,1999)
2. Herman I.P. Physics of the human Body. Springer- Verlag, Berlin, 2007
3. Davidovits P. Physics in Biology and Medicine, 2nd end (Elsevier/Academic, san Diego, 2001)
4. Berne, RM & Levy, MN (2004). Physiology (5thed.). CV. Mosby & Company, St. Louis & Washington, USA.
5. Schmidt, R.F. & Thews, G. (Eds) (1989) Human Physiology. Publ: Springer-Verlag, Berlin, New York.
6. Jack A. Tuszvnski, Michal Kurzynski (2003). Introduction to Molecular Biophysics (Pure and Applied Physics). CRC.
7. Pattabhi, N. Gautham (2002). Biophysics. Springer.
Қосымша әдебиет:
1. Федорова В.Н.,Фаустов Е.В. Медицинская и биологическая физика. Курс лекций с задачами. М.: Издат. гр. «ГЭОТАР-Медиа», 2009, -592 стр.
2. Рощупкин Д.И., Артюхов В.Г., Основы фотобиофизики. Воронеж, 1997.
3. Генис P. Биомембраны. Молекулярная структура и функции. M. «Мир», 1997.
4. Антонов В.Ф., Коржуев А.В. Физика и биофизика. Курс лекций для студентов медвузов. М.: Издат. гр. «ГЭОТАР-Медиа», 2010, -240 стр.
5. Ургалиев Ж.Ш., Саржанов Ф.Н. Медициналық биофизика пәні бойынша зертханалық практикум. Тұран баспасы. Түркістан 2012.